• 제목/요약/키워드: Magnetic Circuit Design

검색결과 464건 처리시간 0.032초

대시포트형 MR유체 마운트의 자극설계에 관한 연구 (Study on design of the magnetic pole used in the dashpot type MR fluid mount)

  • 박우철;이현창
    • 한국산학기술학회논문지
    • /
    • 제10권3호
    • /
    • pp.482-487
    • /
    • 2009
  • 본 연구에서는 MR 유체를 특징으로 하는 대시포트형 마운트를 제안하고, 제안된 MR유체 마운트의 동적지 배방정식을 구하였다. 또한, 자극의 구조 및 형상과 관련된 설계인자의 변화가 솔레노이드에서의 자계 발생에 미치는 영향에 대하여 관찰하였다 솔레노이드에서 발생하는 자기 특성에 대하여 살펴보기 위하여 자극의 유효길이와 코어 중심부의 구조를 달리하여 설계인자로 선정하였다. 등가자기회로법를 이용하여 솔레노이드에서의 자기 특성의 변화를 살펴보고, 이를 상용소프웨어에 의한 계산 결과와 비교하였다. 등가자기회로법에 의한 계산 결과, 자극의 유효길이가 증가할수록 자기저항은 감소하여 자속밀도가 증가하는 경향을 나타내지만, 그 밖의 자기 특성의 변화는 작게 나타났다. 상용 소프트웨어를 이용한 결과와 등가자기회로에 의한 결과는 유사한 경향을 나타내는 것을 확인하였다.

Magnetic circuit optimization in designing Magnetorheological damper

  • Yazid, Izyan I.M.;Mazlan, Saiful A.;Kikuchi, Takehito;Zamzuri, Hairi;Imaduddin, Fitrian
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.869-881
    • /
    • 2014
  • This paper presents the materials analysis for combination of working modes of Magnetorheological (MR) damper. The materials were selected based on the optimum magnetic field strength at the effective areas in order to obtain a better design of MR damper. The design of electromagnetic circuit is one of the critical criteria in designing MR dampers besides the working mechanism and the types of MR damper. The increase in the magnetic field strength is an indication of the improvement in the damping performance of the MR damper. Eventually, the experimental test was performed under quasi-static loading to observe the performances of MR damper in shear mode, squeeze mode and mixed mode. The results showed that the increment of forces was obtained with the increased current due to higher magnetic flux density generated by electromagnetic coils. In general, it can be summarized that the combination of modes generates higher forces than single mode for the same experimental parameters throughout the study.

지능형 최적화 기법 이용한 하이브리드 자기부상 시스템의 설계 (Design of Hybrid Magnetic Levitation System using Intellignet Optimization Algorithm)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1782-1791
    • /
    • 2017
  • In this paper, an optimal design of hybrid magnetic levitation(Maglev) system using intelligent optimization algorithms is proposed. The proposed maglev system adopts hybrid suspension system with permanent-magnet(PM) and electro magnet(EM) to reduce the suspension power loss and the teaching-learning based optimization(TLBO) that can overcome the drawbacks of conventional intelligent optimization algorithm is used. To obtain the mathematical model of hybrid suspension system, the magnetic equivalent circuit including leakage fluxes are used. Also, design restrictions such as cross section areas of PM and EM, the maximum length of PM, magnetic force are considered to choose the optimal parameters by intelligent optimization algorithm. To meet desired suspension power and lower power loss, the multi object function is proposed. To verify the proposed object function and intelligent optimization algorithms, we analyze the performance using the mean value and standard error of 10 simulation results. The simulation results show that the proposed method is more effective than conventional optimization methods.

능동 자기 베어링을 이용한 비접촉식 선형 구동기 (Contact-free Linear Actuator Using Active Magnetic Bearing)

  • 이상헌;백윤수
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.91-98
    • /
    • 2003
  • In the field of precision manufacturing demanding high positioning performance, the mechanical friction in positioning device deteriorates the quality of the product and increases the cost of production for positioning devices. Therefore, we propose a contract-free linear actuator using active magnetic bearing. The structure and operating principle of the proposed system are explained, and the magnetic forces are analyzed by magnetic circuit theory to design magnetic bearings and linear actuator. With the derived equation of motion, the stability is identified. Experimental results are presented to show the feasibility.

자기부상/추진 일체형 차량용 LHSM의 자기형상계수를 고려한 설계와 특성해석 (Design and Analysis with the magnetic shape coefficients of Linear Homopolar Synchronous Motor for vehicles)

  • 장석명;정상섭;이성호;서진호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.22-24
    • /
    • 1997
  • The 4-pole LHSM was composed of the figure-of-eight shaped 3-phase armature windings. DC field windings, and the segmented secondary with the transverse bar track. The motor was designed on the base of the performance characteristic equations and the equivalent circuit model, with the coefficients of the magnetic shape. These coefficients were computed from the analytical expressions and examined from FEM analysis. The magnetic equivalent circuit of 3-D model of LHSM was obtained. and this concept provided the equivalent models for 2-D FEM analysis. Therefore, the airgap field, the lift and thrust force were calculated and compared with the results of magnetic equivalent circuit method.

  • PDF

MODEL ON THE DYNAMIC BEHAVIOR OF CONDUCTIVE FERROMAGNETIC MATERIAL WITH NEGLIGIBLE COERCIVITY

  • Kim, Dac-Soo
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.790-794
    • /
    • 1995
  • Differential equations governing dynamic behavior of toroid-shaped ferro-magnetic material having a small gap of uniform width were derived incorporating Maxwell equations of electromagnetic induction relevent to the system and Newtonian equation of motion. Once the external uniform magnetic field was applied within the material through dc-circuit around the toroid, gap begin to change which lead to the abrupt variation of field in the material and gap according to the differential equations already derived. Characteristics of current and electromotive force with respect to time in the circuit consisting of inductance and resistance in series could be predicted from numerical solutions of these equations. As current in the circuit increasesl, magnetic field in the material increases, thus, the gap starts to shrink due to increased attractive force between gap and elastic restoring force in the material. With an appropriate selection of elastic constant of toroidal ferromagnetic material and design of gap structure it is possible to obtain the specified in both linear and nonlinear magnetic characteristics, such as current dependent and independent inductance.

  • PDF

지하 공동구 비상조명 LED 구동용 초소형 자기 에너지 하베스트 전력관리 회로 설계 (Design of Micro-Magnetic Energy Harvest Power Management Circuit for Emergency Lighting LED Driving in Underground Facility for Public Utilities)

  • 심혜령;이경호;김종현;한석붕
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.495-502
    • /
    • 2020
  • 본 논문에서는 자기 에너지 하베스트를 이용하여 지하 공동구의 비상조명 LED를 구동하는 전력관리 회로를 설계하였다. 자기 에너지 하베스트는 하베스터 소자와 전력관리 회로로 구성되어 진다. 제안하는 회로는 정류기, 배터리 충전회로와 LED 구동회로로 만들어졌다. 평상시에는 만들어진 전력으로 배터리를 충전하고, 비상시에는 배터리에 충전된 에너지를 이용하여 LED를 구동한다. 측정 결과, 47 mF 커패시터를 충전하는 데 2분이 걸렸다. 이것은 약 3분 30초 동안 비상조명용 LED를 구동할 수 있는 전력량이다. 이를 통해, 본 논문에서 제안하는 자기 에너지 하베스트용 전력관리 회로를 이용하여 별도의 전원을 끌어오기 어려운 지하 공동구의 비상조명 LED 구동용 전원장치로 사용할 수 있는 것을 확인하였다.

영구자석을 이용한 저전력형 MR 감쇠기의 설계 (The design of low-power MR damper using permanent magnet)

  • 김정훈;오준호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.433-439
    • /
    • 2000
  • Lots of semi-active control devices have been developed in recent years because they have the best features of passive and active system. Especially, controllable magneto-rheological(MR) fluid devices have received significant attention in these area of research. The MR fluid is the material that reversibly changes from a free-flowing, linear viscous fluid to a semisolid with a controllable yield strength in milliseconds when exposed to a magnetic field. If the magnetic field is induced by moving a permanent magnet instead of applying current to a solenoid, it is possible to design a MR damper consuming low power because the power consumption is reduced at steady state. This paper proposes valve mode MR damper using permanent magnetic circuit that has wide range of operation with low power consumption and small size. To design a MR damper that has a large maximum dissipating torque and a low damping coefficient, a design parameter is adopted. The magnetic circuit, material of choke and choke type are selected experimentally with the design parameter. The behaviors of the damper are examined and torque tracking control using PID feedback controller is performed for step, ramp and sinusoidal trajectories.

  • PDF

Analysis of an Interior Permanent-Magnet Machines with an Axial Overhang Structure based on Lumped Magnetic Circuit Model

  • Seo, Jangho;Seo, Jung-Moo
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.94-101
    • /
    • 2016
  • This paper shows a new magnetic field analysis of an interior permanent magnet (IPM) machines with an axial overhang structure wherein the rotor axial length exceeds that of the stator. The rotor overhang used to increase torque density of the radial flux machine is difficult to analyze because of extra consideration of axial direction, and thus it is general for machine designer to take 3-D finite element analysis (FEA) capable of considering both radial and axial complicated geometry in the machine. However, it requires too much computing time for preliminary design especially for optimization process. Therefore, in this paper a 2-D analytic method using a lumped magnetic circuit model (LMCM) is proposed to overcome the problem. For the analysis of overhang effect, the magnetic circuit is separated and solved from overhang and non-overhang regions respectively. For the validation of proposed concept, 3-D finite element analysis (FEA) is performed. From the analysis results, it is shown that our new proposed method presents good performance in terms of calculating electromotive force (EMF) and torque within a short time. Therefore, the proposed model can be useful in design of IPM with an overhang structure.

축방향 자기 베어링/댐퍼의 전자기적 특성해석 (Electromagnetic Characteristics Analysis of Thrust Magnetic Bearing/Damper)

  • 장석명;이운호;최장영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.2014-2015
    • /
    • 2007
  • This paper deals with design and analysis of thrust magnetic bearing. Using the solutions obtained from equivalent magnetic circuit, we predict the electromagnetic characteristics such as thrust, time constant and power loss according to design parameters. And then, using non-linear finite element analysis, a detailed design is performed considering saturation in order to meet requirements.

  • PDF