• 제목/요약/키워드: Magnetic Circuit

검색결과 1,206건 처리시간 0.035초

유한 요소 해석을 통한 자기변형 구동기 자기 회로 설계 (The design of magnetic circuit of magnetostrictive actuator using finite element method)

  • 이석호;박영우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.548-551
    • /
    • 2004
  • Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of ${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit.

  • PDF

자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석 (Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit)

  • 고주찬;임승택;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

자기 부상계의 변위추정 회로설계에 관한 연구 (A Study on the Gap Estimation Circuit Design of the Magnetic Levitation System)

  • 김창화;하영원;심성효;양주호
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.144-153
    • /
    • 1997
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of gap sensors brings out the increase of the number of troublesome, and the decrease of the control performance because of the dislocation between the measurement point and the control point. This paper presents the design of the gap estimation circuit for the sensorless method proposed by authors in the magnetic levitation system. We made the gap estimation circuit which was composed of both the superposition circuit and the measuring circuit. And we investigated the validity of the usefulness of the proposed sensorless method in the magnetic levitation system through results of actual experiment.

  • PDF

자기회로 이론을 이용한 링형 다극 유도형 변위센서의 모델링 (Modelling of a Ring-type Multi-pole Inductive Position Sensor Using Magnetic Circuit Theory)

  • 김지미;노명규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.207-211
    • /
    • 2004
  • The performance of an inductive position sensor has approved by previous research papers. In this paper, magnetic circuit model of a ring-type multi-pole insuctive position sensor is described. The magnetic circuit model is required to design in ductive position sensor as well as draw a fault tolerance algorithm. Using the magnetic circuit theory, we derived the relationship between voltage applied and flux density in the normal air-gap. By idealizing the modulation/demodulation processes of signal processing circuit, sensor gain with respect to change of displacement is theoretically calculation using the magnetic circuit model, which validate the theoretical derivation.

  • PDF

자기왜형 물질을 이용한 액츄에이터의 설계 및 특성해석 (Analysis and Design Actuator of Using Magnetostrictive Material)

  • 장석명;차상도;임채욱;정태영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.751-753
    • /
    • 2001
  • The characteristic of magnetostrictive is to change shape in a magnetic field, TERFENOL-D is said to produce magnetostriction. A magneto strictive actuator need to the magnetic circuit. The most important design consideration is the magnetic circuit. The magnetic circuit consists of the solenoid coil, permanets for bias and shaping of the other parts through which the magnetic field passes. A good magnetic circuit ensures the proper magnetic field in th TERFENOL-D and very uniform magnetic field in all phases of the actuator operating cycle. This paper presents magnetic circuit design and analysis uesing FEM.

  • PDF

교차 자속을 이용한 새로운 플라이백 컨버터 (A New Flyback Converter Using the Cross Flux of Transformer)

  • 구복재;김효선;박성준;박성미
    • 조명전기설비학회논문지
    • /
    • 제28권9호
    • /
    • pp.73-82
    • /
    • 2014
  • This research proposes a new type of flyback converter topology based on magnetic circuit sharing. The proposed flyback topology uses a transformer involving shared magnetic flux, and its characteristic is magnetic flux cancelation by cross magnetic flux in the magnetic flux-sharing part of the core. The new topology aims to reduce the volume of transformer by reducing the cross section of the core. Compared to conventional converters using only 1 transformer, its circuit configuration involving the serial input and parallel output of 2 flyback coils allowed increased converter insulation strength. In addition, the adoption of interleaved switching method achieved the improvement of output voltage ripple, while magnetic circuit sharing reduced by 50% the cross section of core where magnetic circuit was shared.

자기포화 특성을 고려한 단상유도전동기의 등가회로 해석 (Equivalent Circuit Analysis of Single Phase Induction Motor Considering Magnetic Saturation Characteristics)

  • 김영선
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.270-277
    • /
    • 2013
  • Single phase induction motor(SPIM) is used widely because it is driven by single phase source. However, the efficiency of the motor is not good due to saturation of magnetic material. To analyze the motor accurately, the magnetic saturation characteristics should be considered in analysis of equivalent circuit. In this paper, lumped parameter of circuit are derived from multi phase induction motor using method of symmetrical coordinates. Also, we presents a method for the equivalent circuit analysis of SPIM using magnetic saturation rate. The magnetic nonlinearity is considered deriving magnetizing reactance from voltage-current saturation curve. As a results, current characteristic, torque, output and efficiency are shown through analysis of equivalent circuit. A simulation results of SPIM will be used to improve the characteristics and efficiency of motor.

캡슐형 구동기구를 위한 자기 충격 액추에이터의 개선 (Improvement of Magnetic Impact Actuator for Capsule Type Moving Device)

  • 민현진;곽윤근;김수현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.652-655
    • /
    • 2003
  • This paper is about the recent development of the magnetic impact actuator for endoscope. The developed magnetic impact actuator has many problems to arrange in the system body. Because the magnetic impact actuator need a permanent magnet as an impacter, so the magnetic interference among magnets can not be eliminated. This interference causes the system size bigger. We need a new actuator design to solve these problems. One of the good solutions is to use the closed electro-magnetic circuit. This kind of circuit enhances the actuators to be independent. It is written about the design of the electro-magnetic circuit and simulation using Maxwell(version 9.0)

  • PDF

저주파 플라이백 스위칭회로를 이용한 고성능 자기자극기 (A Magnetic Stimulator Adopting a Low-Frequency Fly-Back Switching Circuit)

  • 이정한;김형식;허문창;김정회
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.343-350
    • /
    • 2006
  • Medical magnetic stimulator generates strong magnetic field pulses. Clinical applications of the magnetic pulse are the stimulation of nervous system and the contraction of muscle. The unique source of the strong magnetic pulse is a capacitor-inductor resonator and this inductor generates a strong sinusoidal magnetic pulse by discharging the capacitor with high initial voltage. Continuous muscle contraction needs sequential generation of the magnetic pulses. However, to keep the magnitude of sequential pulses identical, an expensive high-voltage power supply have to support voltage drop of the capacitor between the pulses. A protection circuit between the supply and the resonator is necessary to protect the supply from reverse current caused by capacitor voltage reversal. In this paper, a new circuit structure of the magnetic stimulator adopting a low-frequency fly-back switching is proposed. The new circuit supports sequential pulse generation and allows the reverse current without damage. Performance of the new circuit is examined and a low-cost magnetic stimulator for urinary incontinence therapy is being developed using the presented method.

위상천이 풀-브릿지 컨버터를 위한 Integrated Magnetic 회로 설계 및 해석 (Analysis and Design of Integrated Magnetic Circuit for Phase Shift Full Bridge Converter)

  • 장은승;이형란;신용환;허태원;김돈식;이효범;신휘범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.406-409
    • /
    • 2008
  • This paper presents the integrated magnetic circuit designing method for phase shift full bridge(PSFB) converter. The integrated magnetic circuit is implemented on redesigned of EI core. The transformer windings are located on center leg and the two inductors are located on the outer legs with air gap. Based on the equivalent circuit model, the principle of operation of the PSFB converter is explained. The operation and performance of the proposed circuit are verified on a 1.2 kW prototype converter. The analysis and design of the integrated magnetic circuit is verified through the experimental and simulation results.

  • PDF