• Title/Summary/Keyword: Magnetic Bearings

Search Result 197, Processing Time 0.026 seconds

A Basic Study on a Magnetic Fluid Driven Artificial Heart (자성유체에 의해 구동되는 인공심장에 관한 기초연구)

  • Kim, Dong-Wook;MITAMURA, Yoshinoro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.940-947
    • /
    • 2006
  • A variety of actuators fur an implantable artificial heart have been studied. They, all, however, share the disadvantages of a complicated energy conversion mechanism and of the need to use bearings. A ferrofluidic actuator directly drives magnetic fluids by applying a magnetic field to these fluids; it does not require bearings. In this study, the feasibility of a ferrofluidic actuator for an implantable artificial heart was studied. An way of two Poles of ring solenoids was mounted near the acrylic tube $({\phi}\;7.4mm)$. A rubber sack (volume : $2m{\ell}$ was connected to both ends of the acrylic tube. The sack were encased in a rigid chamber that had inlet and outlet ports. The acrylic tube and the rubber sack were filled with water encased in a rigid chamber magnetic fluid and the iron cylinder were immersed in the water. Two experiment method was conducted. 1) distance between stoppers were 72mm and 2) distance between stoppers were 104mm. A stroke volume was stability and $0.96m{\ell}$ was obtained in the experiment 1 and $1.92m{\ell}$ in the experiment 2. The energy efficiency of Experiment method 2 is about five times than Experiment method 2. A magnetic fluid-driven blood pump could be feasible if the magnetic fluid with high magnetization (3 times yester than the current value) is developed.

  • PDF

Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings (볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구)

  • Mun, HyeongWook;Seo, JungHwa;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.

Micropositioning of a Linear Motion Table with Magnetic Bearing Suspension (자기 베어링으로 지지 되는 직선운동 테이블의 초정밀 위치제어에 관한 연구)

  • 김의석;안형준;장인배;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.466-469
    • /
    • 1995
  • This paper presents a design and performance of the 6 D.O.F linear motion table with a magnetic bearing suspension. The linear positioning of the table with a 150mm stroke is driven by a brushless DC Linear motor and the other attitudes of the stage are controlled by the analog PD controller with magnetic bearing actuators. Each magnetic bearing unit which consists of 3 electromagnets, 3 capacitance probes and 3 backup bearings affords controlled forces by detecting the air gap between the probes and guideways. An integral type capacitance probe amplifier is equipped on the upper plate of the table so that the probe line to the probe amplifier can be shorter therefore the problems due to the stray capacitance and noise can be reduced. Form the pitch-yaw errormeasured by the autocollimator, the vertical and horizont straightness errors of the table are derived that they are maintained below 1.mu. m over 100mm stroke. The positioning accuracy of the linear motion is maintained below 2 .mu. m and the repeatability error is below 1 .mu. m

  • PDF

Research on Forces and Dynamics of Maglev Wind Turbine Generator

  • Wang, Nianxian;Hu, Yefa;Wu, Huachun;Zhang, Jinguang;Song, Chunsheng
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.443-453
    • /
    • 2013
  • Maglev wind turbine generator (MWTG) technology has been widely studied due to its low loss, low maintenance cost, and high reliability. However, the dynamics of the magnetic bearing system differ fromthe those of the traditional mechanical bearing system. A horizontal axial MWTG supported with a permanent magnetic bearing is designed in this research and the radial forces and the natural frequencies of the rotor system are studied. The results show that the generatorhas a cyclical magnetic forceand an unreasonable bearing stiffness may mean that the rotor system needs to work in the resonance region; the bearing stiffness is the key factor to avoid this problem. This is the main rule of the bearing stiffness design in the MWTG, and this rule can also be used in other maglev permanent magnet motors.

Experimental Evaluation of Q-Parameterization Control for the Imbalance Compensation of Magnetic Bearing Syatem (Q-매개변수화 제어를 이용한 자기축수 시스템의 불평형 보상에 대한 실험적평가)

  • Lee, Jun-Ho;Kim, Hyeon-Gi;Lee, Jeong-Seok;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.278-285
    • /
    • 1999
  • This paper utilizes the method of Q-parameterization control to design a controller which solves the problem of imbalance in magnetic bearing systems. There are two methods to solve this problem using feedback controal. The first method is to compensate for the imbalance forces by generating opposing forces on the bearing surface (imbalance compensation). The second method is to make the rotor rotate around its axis of inertia (automatic balancing);in this case no imbalance forces will be generated. In this paper we deal with only imbalance compensation. The free parameter of the Q-parameterization controller is chosen such that these goals are achieved. After the introduction of a model of the magnetic bearing system, we explain the Q-parameterization controller design of the magnetic bearing system with emphasis on the rejection of sinusoidal disturbance for imbalance compensation design. The design objectives are formulated as a linear equations in the controller free paramete Q. Finally, simulation and experimental results are presented and showed the robustness and effectiveness of the proposed controllers.

  • PDF

A new unbalance compensation method for magnetically supported rotor

  • Ishimatsu, Takakazu;Woo, Shao-Ju;Gahler, Conlad;Taguchi, Nobuyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.245-250
    • /
    • 1993
  • In this paper we propose two feedfroward unbalance compensation algorithms, they accommodate changes of rotor dynamics including rotating speed. The first one determine the compensating signals by identifying system dynamics successively. Whereas, the second one is more primitive like PID algorithm without identifying system dynamics.

  • PDF

Intelligent Active Magnetic Bearings (지능형 마그네틱 베어링)

  • 하영호;이종원
    • Journal of the KSME
    • /
    • v.34 no.10
    • /
    • pp.742-755
    • /
    • 1994
  • 이 글에서는 마그네틱 베어링의 일반적인 특성, 국내외의 연구동향 및 응용추세, 능동형 마그네틱 베어링의 각종 제어 방법에 대하여 기술하였다. 특히 능동형 마그네틱 베어링은 부하능력이 크고 신회도가 높을 뿐만 아니라 상황감시 및 진단 기능과 상황 적응기능을 갖는 지능형 마그 네틱 베어링으로도 이용될 수 있기 때문에 응용 분야가 확대되고 있고 일부 제품은 이미 실용 화되었다. 앞으로 마그네틱 베어링의 고성능화, 소형화, 생산 및 운용 비용 절감을 위한 연구와 특정한 분야에의 응용을 위한 연구가 국내외에서 활발히 진행될 것으로 예상된다.

  • PDF

Effects of Rotor Misalignment in Airgap on Dynamic Response of an Eccentric Rotor in BLDC Motor

  • Kim, Tae-Jong;Kim, Kyung-Tae;Hwang, Sang-Moon;Park, No-Gill;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1576-1582
    • /
    • 2002
  • Vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and magnetic origins which takes place through the motor airgap. When relative misalignment of a rotor in the airgap is introduced during assembly, the dynamic characteristics of the motor system are affected. The rotor-motor system used in a washing machine is modeled using FETM and magnetic forces in a BLDC motor with radial rotor eccentricity are determined analytically The transient whirl responses of a rotor system supported on two roller bearings with relative misalignment in the motor airgap are investigated by considering mechanical and magnetic coupling effects. Results show that rotor misalignment in the airgap considerably affects the vibration of the rotor-motor system.

Design of UPS system using SMB Flywheel Energy Storage System (초전도 플라이휠 에너지 저장시스템을 이용한 UPS 설계)

  • 정환명;최재호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.610-619
    • /
    • 2000
  • This paper presents an off-line UPS using the high temperature superconductive magnetic bearing. FES(Flywheel Energy Storage) system has good advantages in compare with lead acid battery. So, high efficiency FES using high temperature SMB(superconductive magnetic bearing) was composed in this paper. The outer rotor type of PMSM(Permanent Magnet Synchronous Motor) as motor/generator was used for the experiment, and square wave current and sinusoidal wave control methods was compared for high efficiency operation of motor/generator. The circuit for in phase sinusoidal wave current control with EMF in the full speed range was designed and the proposed flywheel energy storage system was applied in single phase off-line UPS system. As the stable operation characteristics of prototype system was confirmed, the its excellence as energy storage device in Off-line UPS was proved.

  • PDF