• Title/Summary/Keyword: Magnetic

Search Result 21,952, Processing Time 0.044 seconds

Magnetic Field Sensor by Using Superconductor (초전도 자기 검출소자)

  • 이상헌
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.86-88
    • /
    • 2002
  • The relationship between electrical properties of superconductor and externally allied magnetic field was studied to develop a magnetic field polarity sensor. The behavior was related to the magnetic flux trapped in the superconductor, which penetrates through the material by the external magnetic field. Electrical characteristics of the superconductor with trapped magnetic flux were extremely sensitive ta the external magnetic field and showed different responses depending on the direction of the magnetic field. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Modeling of a Non-contact Type Precision Magnetic Displacement Sensor (비접촉식 정밀 변위 측정용 자기센서 모델링)

  • Shin, Woo-Cheol;Hong, Jun-Hee;Lee, Kee-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.42-49
    • /
    • 2005
  • Our purpose is to develop a precision magnetic displacement sensor that has sub-micron resolution and small size probe. To achieve this, we first have tried to establish mathematical models of a magnetic sensor in this paper. The inductance model that presents basic measuring principle of a magnetic sensor is based on equivalent magnetic circuit method. Especially we have concentrated on modeling of magnetic flux leakage and magnetic flux fringing. The induced model is verified by experimental results. The model, including the magnetic flux leakage and flux fringing effects, is in good agreement with the experimental data. Subsequently, based on the augmented model, we will design magnetic sensor probe in order to obtain high performances and to scale down the probe.

A Measurement System for Two-Dimensional DC-Biased Magnetic Property

  • Enokizono, Masato;Takahashi, Syuichi;Ikariga, Atsushi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.143-148
    • /
    • 2002
  • Up to now, DC-biased magnetic properties have been measured in one dimension (scalar). However, scalar magnetic properties are insufficient to clarify DC-biased magnetic properties because scalar magnetic properties can only impossibly consider the phase difference between the magnetic flux density B vector and the magnetic field strength H vector. Thus the magnetic field strength H and magnetic flux density B in magnetic materials must be directly measured as a vector quantity (two-dimensional). This paper presents measurement system to clarify the two-dimensional DC-biased magnetic properties.

Magnetic force Characteristics of the Speed Reducer using Magnetic Focusing (자기 포커싱 방법을 적용한 감속 장치의 자기력 특성에 관한 연구)

  • Jung, Kwangsuk
    • Journal of Institute of Convergence Technology
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2021
  • The magnetic gear, which amplifies the torque by filtering the magnetic field generated by the low-speed permanent magnet with a modulator, can exclude gear contact and can be effectively applied when there are environmental restrictions. In this paper, we discuss the magnetic force characteristics of a magnetic gear using a magnetic focusing array that replaces a general permanent magnet array magnetized in a radial direction along the circumferential direction. The torque increasing effect of the discussed array, known as an arrangement that increases the principal component by focusing a radial magnetic field, is compared with that of a general magnetic gear. In particular, in a magnetic gear using such an array, the sensitivity of torque according to variables is analyzed to see how various variables known as factors affecting torque have an effect.

Numerical Analysis of Magnetic Flux Density Distribution by an Openable Magnetic Flux Generator for MIAB Welding (MIVB 용접용 개폐형 자속발생기에 의한 자원밀도분포의 수치해석)

  • Ku Jin-Mo;Kim Jae-Woong
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.50-56
    • /
    • 2004
  • MlAB(magnetically impelled arc butt) welding is a sort of pressure welding method by melting two pipe sections with high speed rotating arc and upsetting two pipes in the axial direction. The electro-magnetic force, the driving force of the arc rotation, is generated by interaction of arc current and magnetic field induced from the magnetic flux generator in the welding system. In this study, an openable coil system for the generation of magnetic flux and a 3-dimensional numerical model for analyzing the electro-magnetic field were proposed. Through the fundamental numerical analyses, a magnetic concentrator was adopted for smoothing the magnetic flux density distribution in the circumferential direction. And then a series of numerical analysis were performed for investigating the effect of system parameters on the magnetic flux density distribution in the interested welding area.. Numerical quantitative analyses showed that magnetic flux density distribution generated from the proposed coil system is mainly dependent on the exciting current in the coil and the position of coil or concentrator from the pipe outer surface. And the gap between pipe ends and arc current are also considered as important factors on arc rotating behavior.

Estimate the Magnetic Field Strength using rotation measure

  • Yoon, Hee-Sun;Cho, Jung-Yeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.107.2-107.2
    • /
    • 2011
  • Most astrophysical systems are turbulent and magnetized. Magnetic field plays an important role in the dynamics of astrophysical system and influence all of properties of astrophysical system. Therefore, information of magnetic field is very important to understand properties of astrophysical system. One way to obtain information of magnetic field is to use rotation measure. Mean strength of the magnetic field along the line of sight can be estimated from RM/DM, where RM is rotation measure and DM is dispersion measure. For the estimation of magnetic field strength using RM/DM, the correlation between density and magnetic field. When there is no correlation between density and magnetic field the relation gives exact mean magnetic strength. But if the positive correlation, it overestimates the magnetic field strength, while if the correlation is negative, it underestimate the magnetic field strength. In general, the ICM (intracluter medium) and the ISM (interstellar medium) cases, viscosity has a value greater than magnetic diffusion. We performed compressible MHD turbulence simulations and we studied correlation between density and magnetic field in different values of viscosity and magnetic diffusion. In most cases, we found weak or negative relations between the density and magnetic fields. We discuss implication of our results.

  • PDF

Stochastic nature of magnetic processes studied by full-field soft X-ray microscopy

  • Im, Mi-Young
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1174-1181
    • /
    • 2018
  • In nanomagnetism, one of the crucial scientific questions is whether magnetic behaviors are deterministic or stochastic on a nanoscale. Apart from the exciting physical issue, this question is also of paramount highest relevance for using magnetic materials in a wealth of technological applications such as magnetic storage and sensor devices. In the past, the research on the stochasticity of a magnetic process has been mainly done by macroscopic measurements, which only offer ensemble-averaged information. To give more accurate answer for the question and to fully understand related underlying physics, the direct observation of statistical behaviors in magnetic structures and magnetic phenomena utilizing advanced characterization techniques is highly required. One of the ideal tools for such study is a full-field soft X-ray microscope since it enables imaging of magnetic structures on the large field of view within a few seconds. Here we review the stochastic behaviors of various magnetic processes including magnetization reversal process in thin films, magnetic domain wall motions in nanowires, and magnetic vortex formations in nanodisks studied by full-field soft X-ray microscopy. The origin triggering the stochastic nature witnessed in each magnetic process and the way to control the intrinsic nature are also discussed.

Magnetic separation device for paramagnetic materials operated in a low magnetic field

  • Mishima, F.;Nomura, N.;Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.19-23
    • /
    • 2022
  • We have been developing a magnetic separation device that can be used in low magnetic fields for paramagnetic materials. Magnetic separation of paramagnetic particles with a small particle size is desired for volume reduction of contaminated soil in Fukushima or separation of iron scale from water supply system in power plants. However, the implementation of the system has been difficult due to the needed magnetic fields is high for paramagnetic materials. This is because there was a problem in installing such a magnet in the site. Therefore, we have developed a magnetic separation system that combines a selection tube and magnetic separation that can separate small sized paramagnetic particles in a low magnetic field. The selection tube is a technique for classifying the suspended particles by utilizing the phenomenon that the suspended particles come to rest when the gravity acting on the particles and the drag force are balanced when the suspension is flowed upward. In the balanced condition, they can be captured with even small magnetic forces. In this study, we calculated the particle size of paramagnetic particles trapped in a selection tube in a high gradient magnetic field. As a result, the combination of the selection tube and HGMS (High Gradient Magnetic Separation-system) can separate small sized paramagnetic particles under low magnetic field with high efficiency, and this paper shows its potential application.

Theoretical Analysis of Magnetic Flux Density Distribution in an Electro-Magnetic Chuck

  • Kim, Chung-Kyun
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.114-119
    • /
    • 2001
  • The distribution of magnetic flux density of electro-magnetic chucks may clarify the clamping characteristics, which is strongly related to the machining efficiency and machining accuracy in surface grinding machine. Therefore the distribution of the normal and the tangential components of magnetic flux density have been analyzed theoretically. It appears that the normal component of magnetic flux density increases and the tangential component of magnetic flux density increases as the ratio of the separator width to the pitch, e/p decreases. The results seem to increase the stability and uniformity of normal component of magnetic flux density for the decreased e/p.

  • PDF

Numerical Analysis on the Deformation of Free Surface of Magnetic Fluid (자성유체의 자유표면의 변형에 관한 수치해석)

  • Nam S.W.;Kamlyama S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.132-137
    • /
    • 1995
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented.

  • PDF