DOI QR코드

DOI QR Code

Stochastic nature of magnetic processes studied by full-field soft X-ray microscopy

  • Im, Mi-Young (Center for X-ray Optics, Lawrence Berkeley National Laboratory)
  • Received : 2018.04.11
  • Accepted : 2018.05.03
  • Published : 2018.11.30

Abstract

In nanomagnetism, one of the crucial scientific questions is whether magnetic behaviors are deterministic or stochastic on a nanoscale. Apart from the exciting physical issue, this question is also of paramount highest relevance for using magnetic materials in a wealth of technological applications such as magnetic storage and sensor devices. In the past, the research on the stochasticity of a magnetic process has been mainly done by macroscopic measurements, which only offer ensemble-averaged information. To give more accurate answer for the question and to fully understand related underlying physics, the direct observation of statistical behaviors in magnetic structures and magnetic phenomena utilizing advanced characterization techniques is highly required. One of the ideal tools for such study is a full-field soft X-ray microscope since it enables imaging of magnetic structures on the large field of view within a few seconds. Here we review the stochastic behaviors of various magnetic processes including magnetization reversal process in thin films, magnetic domain wall motions in nanowires, and magnetic vortex formations in nanodisks studied by full-field soft X-ray microscopy. The origin triggering the stochastic nature witnessed in each magnetic process and the way to control the intrinsic nature are also discussed.

Keywords

Acknowledgement

Supported by : Korean National Research Foundation (NRF), Ministry of Science, ICT and Future Planning, U.S. Department of Energy

References

  1. M. Mansuripur, The Physical Principles of Magneto-optical Recording, Cambridge University Press, New York, 1995, pp. 543-676.
  2. A. Hubert, R. Schafer, Magnetic Domains, Springer, Berlin, 1998.
  3. J.M. Deutsch, A. Dhar, O. Narayan, Phys. Rev. Lett. 92 (2004) 227203. https://doi.org/10.1103/PhysRevLett.92.227203
  4. A. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, E.E. Fullerton, J. Phys. D Appl. Phys. 35 (2002) R157-R167. https://doi.org/10.1088/0022-3727/35/19/201
  5. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, Phys. Rev. Lett. 61 (1988) 2472-2475. https://doi.org/10.1103/PhysRevLett.61.2472
  6. R.S. Popovic, J.A. Flanagan, P.A. Besse, Sensor. Actuator. a 56 (1996) 39-55. https://doi.org/10.1016/0924-4247(96)01285-X
  7. Yaojin Wang, Jiefang Li, D. Viehland, Mater. Today 17 (2014) 269-275. https://doi.org/10.1016/j.mattod.2014.05.004
  8. K. Ohashi, H. Takagi, S. Tsunashima, T. Fujii, S. Uchiyama, J. Appl. Phys. 50 (1979) 1611-1613. https://doi.org/10.1063/1.327266
  9. J.R. Petta, M.-B. Weissman, G. Durin, Phys. Rev. E 56 (1997) 2776. https://doi.org/10.1103/PhysRevE.56.2776
  10. P. Cizeau, S. Zapperi, G. Durin, H.E. Stanley, Phys. Rev. Lett. 79 (1997) 4669-4672. https://doi.org/10.1103/PhysRevLett.79.4669
  11. W. Chao, B.H. Harteneck, J.A. Liddle, E.H. Anderson, D.T. Attwood, Nature 435 (2005) 1210-1213. https://doi.org/10.1038/nature03719
  12. W. Chao, et al., Optic Express 17 (2009) 17669-17677. https://doi.org/10.1364/OE.17.017669
  13. M.-Y. Im, P. Fischer, D.-H. Kim, K.-D. Lee, S.-H. Lee, S.-C. Shin, Adv. Mater. 20 (2008) 1750-1754. https://doi.org/10.1002/adma.200702034
  14. M.-Y. Im, P. Fischer, D.-H. Kim, S.-C. Shin, Appl. Phys. Lett. 95 (2009) 182504. https://doi.org/10.1063/1.3256188
  15. M.-Y. Im, P. Fischer, J. Phys. Condens. Matter 24 (2012) 024203. https://doi.org/10.1088/0953-8984/24/2/024203
  16. M.-Y. Im, L. Bocklage, P. Fischer, G. Meier, Phys. Rev. Lett. 102 (2009) 147204. https://doi.org/10.1103/PhysRevLett.102.147204
  17. M.-Y. Im, P. Fischer, K. Yamada, T. Sato, S. Kasai, Y. Nakatani, T. Ono, Nat. Commun. 3 (2012) 983. https://doi.org/10.1038/ncomms1978
  18. M.-Y. Im, K.-S. Lee, A. Vogel, Jung-Il Hong, Guido Meier, Peter Fischer, Nat. Commun. 5 (2014) 5620. https://doi.org/10.1038/ncomms6620
  19. M.-Y. Im, K.-S. Lee, A. Vogel, Jung-Il Hong, G. Meier, NPG Asia Materials, vol. 9, P. Fischer, 2017, p. e348.
  20. J.-J. Delaunay, T. Hayashi, M. Tomita, S. Hirono, S. Umemura, Appl. Phys. Lett. 71 (1997) 3427-3429. https://doi.org/10.1063/1.120356
  21. D.H. Ping, M. Ohnuma, K. Honoa, M. Watanabe, T. Iwasa, T. Masumoto, J. Appl. Phys. 90 (2001) 4708-4716. https://doi.org/10.1063/1.1405831
  22. A. Perumal, Y.K. Takahashi, K. Hono, 07B732, J. Appl. Phys. Nor. 105 (2009). https://doi.org/10.1063/1.3075986
  23. W. Sadnawanto, Budi Purnama, J. Phys. Conf. 539 (2014) 012024. https://doi.org/10.1088/1742-6596/539/1/012024
  24. Patrick W. Granitzka, et al., Nano Lett. 17 (2017) 2426-2432. https://doi.org/10.1021/acs.nanolett.7b00052
  25. Andrea Meo, et al., Sci. Rep. 7 (2017) 16729. https://doi.org/10.1038/s41598-017-16911-3
  26. E. Martinez, et al., Sci. Rep. 5 (2015) 10156. https://doi.org/10.1038/srep10156
  27. H. Barkhausen, Z. Phys. 20 (1919) 401-403.
  28. K.-S. Ryu, H. Akinaga, S.-C. Shin, Nat. Phys. 3 (2007) 547-550. https://doi.org/10.1038/nphys659
  29. J.L. Garcia-Palacios, F.J. Lazaro, Phys. Rev. B 58 (1998) 14937. https://doi.org/10.1103/PhysRevB.58.14937
  30. W.F. Brown, Phys. Rev. 130 (1963) 1677-1686. https://doi.org/10.1103/PhysRev.130.1677
  31. D.A. Allwood, G. Xing, M.D. Cooke, C.C. Faulkner, D. Atkinson, N. Vernier, R.P. Cowburn, Science 296 (2002) 2003-2006. https://doi.org/10.1126/science.1070595
  32. S.S.P. Parkin, Shiftable magnetic shift register and method of using the same, U.S. Patent No. 6834005 2004.
  33. R.P. Cowburn, Nature (London) 448 (2007) 544-545. https://doi.org/10.1038/448544a
  34. T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, T. Shinjo, Science 284 (1999) 468-470. https://doi.org/10.1126/science.284.5413.468
  35. M. Klaui, C.A.F. Vaz, J. Rothman, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, Phys. Rev. Lett. 90 (2003) 097202. https://doi.org/10.1103/PhysRevLett.90.097202
  36. M. Hayashi, L. Thomas, R. Moriya, C. Rettner, S.S.P. Parkin, Science 320 (2008) 209-211. https://doi.org/10.1126/science.1154587
  37. J. Akerman, M. Muñoz, M. Maicas, J.L. Prieto, Phys. Rev. B 82 (2010) 064426. https://doi.org/10.1103/PhysRevB.82.064426
  38. J. Briones, F. Montaigne, M. Hehn, D. Lacour, Phys. Rev. B 83 (2011) 060401. https://doi.org/10.1103/PhysRevB.83.060401
  39. K.A. Omari, T.J. Hayward, Sci. Rep. 5 (2017) 17862.
  40. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, T. Ono, Science 289 (2000) 930-932. https://doi.org/10.1126/science.289.5481.930
  41. A. Wachowiak, et al., Science 298 (2002) 577-579. https://doi.org/10.1126/science.1075302
  42. B. Van Waeyenberge, et al., Nature 444 (2006) 461-464. https://doi.org/10.1038/nature05240
  43. D. Mitin, D. Nissen, P. Schadlich, S.S.P.K. Arekapudi, M. Albrecht, J. Appl. Phys. 115 (2014) 063906. https://doi.org/10.1063/1.4865746
  44. D.S. Han, A. Vogel, H. Jung, K.S. Lee, M. Weigand, H. Stoll, G. Schutz, P. Fischer, G. Meier, S.K. Kim, Sci. Rep. 3 (2013) 2262. https://doi.org/10.1038/srep02262
  45. H. Jung, Y.-S. Choi, K.-S. Lee, D.-S. Han, Y.-S. Yu, M.-Y. Im, P. Fischer, S.-K. Kim, ACS Nano 6 (2012) 3712-3717. https://doi.org/10.1021/nn3000143
  46. L. Sun, R.X. Cao, B.F. Miao, Z. Feng, B. You, D. Wu, W. Zhang, A. Hu, H.F. Ding, Phys. Rev. Lett. 110 (2013) 167201. https://doi.org/10.1103/PhysRevLett.110.167201