• Title/Summary/Keyword: Magnet coupling

Search Result 96, Processing Time 0.025 seconds

The Influence of Magnetization Pattern on the Performance of Permanent Magnet Eddy Current Couplings and Brakes

  • Cha, Hyun-Rok;Cho, Han-Wook;Lee, Sung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.379-384
    • /
    • 2008
  • This paper examines permanent magnet eddy current couplings and brakes. Specifically, the effect of permanent magnet magnetization patterns on the magnetic field and force production is investigated. The eddy current couplings and brakes employ high energy-product neodymium-iron-boron (NdFeB) permanent magnets that act on iron-backed copper drums to provide torque transfer from motor to load without mechanical contact. A 2-dimensional finite element modeling is performed to predict the electromagnetic behavior and the torque-speed characteristics of permanent magnet type eddy current couplings and brakes under constant speed operation.

Design and analysis of a control system for a multi-magnet levitation system

  • Kweon, Soon-Man;Kim, Seog-Joo;Kim, Jong-Moon;Kim, Kook-Hun;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1332-1336
    • /
    • 1990
  • This paper deals with some analytical and experimental aspects to control a multi-magnet suspended vehicle. Because the response of a multi-magnet vehicle shows mutually coupled interaction, an analytical description of the vehicle dynamics is necessary. For numerical computations, a linearized modelling of vehicle dynamics is dicussed and computer simulation is carried out. And for the experiment, a test vehicle suspended by four magnets has been made and investigated by local control of each magnet. Two algorithms by PID and state feedback control law are used and compared with each other. Some kinds of disturbance characteristics and coupling effects of the width change of the test vehicle are experimented.

  • PDF

Field Circuit Coupling Optimization Design of the Main Electromagnetic Parameters of Permanent Magnet Synchronous Motor

  • Zhou, Guang-Xu;Tang, Ren-Yuan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The electromagnetic parameters of a permanent magnet synchronous motor (PMSM) such as the open load permanent magnet flux, d axis reactance $X_d$, and q axis reactance $X_q$, are most essential to the performance analysis and optimization design of the motor. Based on the numerical analysis of the 3D electromagnetic field, the three electromagnetic parameters of permanent magnet synchronous motors with U form interior rotor structures are calculated by FEA. The rules of the leakage coefficient and reactance parameters changing with the air gap length, permanent magnet magnetism length, and isolation magnetic bridge dimensions in the rotor are given. The calculated values agree well with the measured values. The FEA results are integrated with the self compiled electromagnetic design program to optimize the prototype motor. The tested performances of the prototype motor prove that the method is suitable for the optimization of motor structure.

Study on Organic Binder for Anisotropic Rare-Earth Bonded Magnets (이방성 희토류 본드자석용 유기 바인더에 관한 연구)

  • Heo, Jeong-Sub;Cho, Yeon-Hwa;Nam, Sung-Cheol;Kim, Ji-Kyeong;Lee, Jung-Goo;Yu, Ji-Hoon
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.3
    • /
    • pp.86-89
    • /
    • 2014
  • Anisotropic bonded magnet is composed of magnetic powder and organic binder. organic binder in bonded magnet, serves to orientation of the powder. organic binder is composed of polymer resin, lubricant, hardener and coupling agent, etc.in this study, selection of the various components to producing an organic binder and by adjusting the composition ratio and concentrate, apply to bonded magnet for producing an organic binder that suitable for magnetic powder. so evaluation of magnetic properties and mechanical properties, the organic binder ratio and component was confirmed to suitable for bonded magnet.

Design and Dynamic Characteristics analysis of Moving Magnet Linear Actuator Considering the Magnetic Nonlinear phenomena (자기적 비선형을 고려한 Moving Magnet Linear Actuator의 설계 및 동특성 해석)

  • Hwang Kyu-Hwan;Kim Chul-Han;Jeon Kyeo-Lock;Cho Yun-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.259-262
    • /
    • 2003
  • This paper is proposed a new linear actuator with the permanent magnet on the mover. This linear actuator is designed to produce the vibration of a osillator. In order to evaluate its dynamic performance, the equivalent coupling parameter between mechanical and electromagnetic equations of the linear actustor, which is considered the magnetic nonlinear phenomena, is analyzed by the finite element method and estimated the thrust, displacement and acceleration with the simualation values and the experimenta ones.

  • PDF

Parametric Analysis and Experimental Testing of Radial Flux Type Synchronous Permanent Magnet Coupling Based on Analytical Torque Calculations

  • Kang, Han-Bit;Choi, Jang-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.926-931
    • /
    • 2014
  • This paper presents the torque calculation and parametric analysis of synchronous permanent magnet couplings (SPMCs). Based on a magnetic vector potential, we obtained the analytical magnetic field solutions produced by permanent magnets (PMs). Then, the analytical solutions for a magnetic torque were obtained. All analytical results were extensively validated with the non-linear a two-dimensional (2D) finite element analysis (FEA). In particular, test results such as torque measurements are presented that confirm the analysis. Finally, using the derived analytical magnetic torque solutions, we carried out a parametric analysis to determine the influence of the design parameters on the SPMC's behavior.

A Four Pole, Double Plane, Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Na, Uhn-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_1
    • /
    • pp.659-667
    • /
    • 2021
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 4-active-pole, double plane, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. If any of the 4 coils fail, the remaining three coil currents change via a novel distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. Magnetic flux coupling in the magnetic bearing core and the optimal current distribution helps to produce the same c-core fluxes as those of unfailed bearing even if one coil suddenly fails. Thus the magnetic forces and the load capacity of the bearing remain invariant throughout the failure event. It is shown that the control fluxes to each active pole planes are successfully isolated. A numerical example is provided to illustrate the new theory.

Monte Carlo Study of Layered Heisenberg Ferromagnet

  • Lee, Kyuwon
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.119-121
    • /
    • 2001
  • Monte Carlo simulation was employed to study the phase transition in the classical Heisenberg ferromagnet with variable interlayer interactions. The measured transition temperatures show a strong logarithmic dependence on J/J'where J and J'are the intralayer and the interlayer exchange interaction, respectively. The results were compared with the theoretical expectations and an empirical formula for the critical coupling was stained.

  • PDF

Antiferromagnetically Exchange-coupled Two Phase Magnets: Co/Co2TiSn

  • Kim, Tae-Wan;Oh, Jung-Keun
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.43-52
    • /
    • 2008
  • The objective of this paper is to review the magnetic and magneto-transport properties of Co/$Co_2TiSn$ consisting of two metallic magnetic phases that are antiferromagnetically exchange-coupled at the phase boundary. The bulk Co/$Co_2TiSn$ system, which has a $Co_2$TiSn Heusler alloy precipitates in the hexagonal Co matrix, showed an unusual coercivity change with a concurrent change in temperature, and was modeled on the basis of a wall formation caused by exchange coupling at the phase boundary. For measurements of magneto-transport properties, Co/$Co_2TiSn$ thin films that had two-magnet phases were deposited using a magnetron sputtering system with a composite target. The magnetization process in the films is also explained on the basis of the model of wall formation at the phase boundary. Annealed Co/$Co_2TiSn$ films showed a 0.12% GMR effect, indicating the scattering of polarized conduction electrons due to the antiparallel exchange coupling at the phase boundary. The scattering process of conduction electrons at the phase boundary was modeled with relation to the magnetization process.

Dynamic Characteristics Analysis of Linear BLOC motor using Finite Element Method Coupling with External Circuit Model (외부회로가 결합된 선형 BLDC 전동기의 유한요소법을 이용한 동특성 해석)

  • Chung, Koon-Seok;Kim, Mi-Jung;Moon, Ji-Woo;Cho, Yun-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1231-1235
    • /
    • 2007
  • This paper presents the dynamic characteristics of a linear brushless dc (BLDC) motor with permanent magnet excitation for the precision conveyor according to the load condition. Dynamic performance of the linear BLDC motor driven with 6 step inverter such as thrust force and speed is simulated by finite element method coupling with external circuit and measured for the prototype motor. The results of finite element analysis are compared to the experimental results and verify reliability.