• Title/Summary/Keyword: Magnet Levitation system

Search Result 109, Processing Time 0.052 seconds

Analysis on the Characteristics of the Superconducting Electrodynamic Suspension According to the Variation of the Ground Conductor (지상도체 변화에 따른 초전도 반발식 자기부상 특성 해석)

  • Bae, Duck-Kweon;Cho, Han-Wook;Lee, Jong-Min;Han, Hyung-Suk;Lee, Chang-Young;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1159_1160
    • /
    • 2009
  • This paper presents the numerical simulation results on the supercodnucting electrodynamic suspension (EDS) simulator according to the variation of the ground conductor. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible way to simulate the EDS system were simulated in this paper by using finite element method (FEM). The static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

  • PDF

Characteristic Analysis of HTS EDS System with Various Ground Conductors

  • Bae, Duck-Kweon;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.2
    • /
    • pp.21-24
    • /
    • 2010
  • This paper deals with numerical analysis on a high-$T_c$ superconducting (HTS) electrodynamic suspension (EDS) simulator according to the variation of the ground conductor conditions. Because the levitation force of EDS system is formed by the magnetic reaction between moving magnets and fixed ground conductors, the distribution of the magnetic flux on a ground conductor plays an important role in the determining of the levitation force level. The possible way to analyze HTS EDS system was implemented with 3D finite element method (FEM) tool. A plate type ground conductor generated stronger levitation force than ring type ground conductor. Although the outer diameter of Ring3 (335 mm) was larger than that of Ring2 (235 mm), the levitation force by Ring2 was stronger than that by Ring3. Considering the results of this paper, it is recommended that the magnetic flux distribution according to the levitation height and magnet current should be taken into account in the design of the ground conductors.

A Design of Linear Motor with High Power Density and High Efficiency for Railway and Magnetic Levitation System (철도 차량용 고출력 고효율 선형 추진시스템 설계)

  • Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.393-396
    • /
    • 2001
  • According to the development of power electronic element(GTO, IGBT) and material for electrical machines(permanent magnet, super conductor), the technology for electrical machines is nowaday rapidly developing. Here with, a novel electrical machine, based on the new conception of transverse flux configuration leads to a considerable Increase in power density and enables simultaneously high efficiency. The transverse flux machine with PM excitation will be applied to gearless direct drives for railway traction system and magnetic levitation system. The designed and measured performance of transverse machine for railway traction system and magnetic levitation system revealed a great potential of system improvements to reduce linear motor mass and increase efficiency.

  • PDF

Design and Analysis of an Axial Flux Magnet for Magnetic Levitation System. (자기부상용 증축형 전자석의 설계 및 특성 해석)

  • Kang, Do-Hyun;Shin, Pan-Seok;Kim, Yong-Joo;Cho, Yun-Hyun;Park, Do-Young
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.63-67
    • /
    • 1990
  • An axial flux magnet for a magnetic levitation system is designed and analysed by finite element simulations. The results are compared with those of experiment in order to verify the analysing method. Lift force, air gap flux density and temperature characteristics of the magnet showed fairly good agreement with each other.

  • PDF

Core Technologies of Superconducting Magnet for High-speed Maglev and R&D Activities in Korea (초고속 Maglev용 초전도 마그넷 요소 기술 및 국내 연구 개발 현황)

  • Lee, Chang-Young;Kang, Bu-Byoung;Han, Young-Jae;Sim, Ki-Deok;Park, Dong-Keun;Ko, Tae-Kuk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1454-1460
    • /
    • 2009
  • Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor(LSM) and levitation by electro-dynamic suspension(EDS) which are utilized in the Japan's MLX system could be one of candidated technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev. As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

  • PDF

Robust Zero Power Levitation Control of Quadruple Hybrid EMS System

  • Cho, Su-Yeon;Kim, Won-Ho;Jang, Ik-Sang;Kang, Dong-Woo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1451-1456
    • /
    • 2013
  • This paper presents the improved zero power levitation control algorithm for a quadruple hybrid EMS (Electromagnetic Suspension) system. Quadruple hybrid EMS system is a united form of four hybrid EMS systems one on each corner coupled with a metal plate. Technical issue in controlling a quadruple hybrid EMS system is the permanent magnet's equilibrium point deviation caused by design tolerance which eventually leads to a limited zero power levitation control that only satisfies the zero power levitation in one or two hybrid EMS system among the four hybrid EMS system. In order to satisfy a complete zero power levitation control of the quadruple hybrid EMS system, the proposed method presented in this paper adds a compensating algorithm which adjusts the gap reference of each individual axe. Later, this paper proves the stability and effectiveness of the proposed control algorithm via experiment and disturbance test.

Design of Hybrid Magnetic Levitation System using Intellignet Optimization Algorithm (지능형 최적화 기법 이용한 하이브리드 자기부상 시스템의 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1782-1791
    • /
    • 2017
  • In this paper, an optimal design of hybrid magnetic levitation(Maglev) system using intelligent optimization algorithms is proposed. The proposed maglev system adopts hybrid suspension system with permanent-magnet(PM) and electro magnet(EM) to reduce the suspension power loss and the teaching-learning based optimization(TLBO) that can overcome the drawbacks of conventional intelligent optimization algorithm is used. To obtain the mathematical model of hybrid suspension system, the magnetic equivalent circuit including leakage fluxes are used. Also, design restrictions such as cross section areas of PM and EM, the maximum length of PM, magnetic force are considered to choose the optimal parameters by intelligent optimization algorithm. To meet desired suspension power and lower power loss, the multi object function is proposed. To verify the proposed object function and intelligent optimization algorithms, we analyze the performance using the mean value and standard error of 10 simulation results. The simulation results show that the proposed method is more effective than conventional optimization methods.

A Study on the Magnetic Levitation Technology for Iron Plate Conveyance (강판운송을 위한 자기부상기술에 관한 연구)

  • 조경재;차인수;이권현
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.95-98
    • /
    • 1998
  • Applying the magnetically levitated transportation system, which is noncontact bearing system, to solve the problems such as transformation of original form or flaw of iron plate caused by transportation of thin iron plate which required high quality as body of motor vehicle, materials of electronic devices etc.. Magnetic saturation phenomena caused by thickness of iron plate and gap size between magnets. In case of iron plate, the vibration mode will be considered since vibration occurs during transportation. In order to solve the problems caused by vibration, choose the levitation system method using numbers of magnet, magnetic saturation for thickness and length of iron plate with parameters in location and gap of magnet. In this paper, we will suggest the whole design technique of magnetically levitated transportation system, namely method of magnetic attraction and transportation system

  • PDF

Development of Lossless Hybrid-type Magnetic Levitation System (무손실 하이브리드 자기부상 시스템 개발)

  • Kim, Jong-Moon;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.31-33
    • /
    • 2005
  • In this paper, a design of lossless hybrid-type magnetic levitation system is presented. The lossless hybrid-type system is implemented by a permanent-magnet and electro-magnetic system. The target plant consists of eight hybrid-type magnets and at steady-state, no current is needed to support the load. The design procedure is described and the results of this work are shown.

  • PDF

Development of a Hybrid Haptic Master System Without Using a Force Sensor (힘 센서를 이용하지 않는 혼합형 햅틱 마스터 시스템의 개발)

  • Park, Gi-Hwan;Bae, Byeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1308-1316
    • /
    • 2001
  • A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance.