• Title/Summary/Keyword: Magnet Field

Search Result 937, Processing Time 0.025 seconds

High-temperature superconductors for NMR/MRI magnets:opportunities and challenges

  • Iwasea, Yukikazu;Bascunan, Juan;Hahn, Seung-Yong;Yao, Wejun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 2009
  • The unique features of HTS offer Opportunities and challenges to a number of applications. In this paper we focus on NMR and MRI magnets, illustrating them with the NMR/MRI magnets that we are currently and will shortly be engaged: a 1.3GHz NMR magnet, an "annulus" magnet, and an $MgB_2$ whole-body MRI magnet. The opportunities with HTS include: 1) high fields (e.g., 1.3GHz magnet); 2) compactness (annulus magnet); and 3) enhanced stability despite liquid-helium-free operation ($MgB_2$ whole-body MRI magnet). The challenges include: 1) a large screening current Beld detrimental to spatial field homogeneity (e.g., 1.3 GHz magnet); 2) uniformity of critical current density (annulus magnet); and 3) superconducting joints ($MgB_2$ magnet).

Elementary Students' Conceptions of Magnetic Field by Drawing lines of Magnetic Field (자기력선 그림을 통한 초등학생들의 자기장 개념 조사)

  • Kwon, Sung-Gi;Shin, Mi-Sung
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.4
    • /
    • pp.440-448
    • /
    • 2007
  • The purpose of this study is to examine elementary students' conceptions of magnetic fields around various magnets by drawing tasks. A total of 105 elementary students from the 3rd and 6th grade levels were asked to draw how iron filings would arrange around magnets. We classified their drawings of magnetic field lines with some criteria to identify conceptions of magnetic forces and checked them through interviewing about their representative drawing. Through analyzing drawings, we discovered that 40% of elementary students drew the correct arrangement of iron filings around a bar magnet. In the case of two bar magnets in opposite directions, 33% of them drew correct patterns of iron dust and around two magnets in the same direction only 20% did well. Only 2.9% and 7.6% of students presented the correct drawings of magnetic fields near a disc and a horseshoe magnet. While 3rd grade students were supposed to be poor in drawings of magnetic fields around a loose and a dense coil which was not learned about, only 31% and 23% of 6th grade students who have just studied electromagnetism properly drew patterns of iron dust. This shows that only one quarter of students understood the magnetic filed lines even after instruction of electromagnetism. Many of 6th grade students learned a solenoid becomes just as a permanent magnet, but very few of them correctly drew a magnetic field line could distinguish between the iron dust around a loose and dense coil. After interviewing students, it is found that students consider magnetic forces to be existed only in parts of magnet because many of them drew magnetic field line of a specific areas around magnets. Students had misconceptions that magnetic forces exist only on the poles not in the middle around a horseshoe magnet. Also the disc-shape magnet made students to reveal various types of misconceptions: N- and S-poles are mixed in a whole magnet and right part of a disc-shape magnet is N-pole, left part is S-pole. Students who had not studied magnetic fields of around a magnet and electromagnets could not draw the correct patterns of iron dust suggest that it is indispensable for students to teach how patterns of iron filings would represent a visual image of magnetic fields in order to understand magnetic fields.

  • PDF

Development of Ferro-magnetic Shimming System for 1.5T MRI Magnet (1.5T MRI용 Ferro-magnetic shimming 장치 개발)

  • 심기덕;배준한;고락길;진홍범;권영길
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.178-181
    • /
    • 2001
  • Two methods can be used to correct the undesirable magnetic field of MRI. One is active shimming method and the other is ferro-magnetic shimming. Ferro-magnetic shimming method is more inexpensive, more convenient in operation and more effective on correcting magnetic field. So, nowadays, it is the general method for shimming the commercialized MRI magnet. We have developed a 1.5T MRI magnet and its ferromagnetic shimming system. Using the ferro-magnetic shimming system, we have improved the field homogeneity of the 1.5T MRI magnet.

  • PDF

Detent Force Analysis in Permanent Magnet Linear Synchronous Motor Considering Longitudinal End Effects

  • Li, Liyi;Ma, Mingna;Chan, C.C.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This paper presents a uniform analytical model by energy method and Fourier series expansion to analyze detent force in uneven magnetic field for permanent magnet linear synchronous motor (PMLSM). The model reveals that detent force in long-primary type is mainly influenced by non-ideal distribution of permanent magnet magnetic motive force, while nounified air-gap permeance makes a great impact on detent force of short-primary type. Hence, magnetic field similarity of motor design techniques referring rotary counterpart are adopted. For long-primary type novel method of splitting edge magnets is proposed to reduce end effects force, and optimal widths of edge tooth in short-primary type also verify the effectiveness of magnetic field similarity. The experimental results validate finite element analysis results.

Magnet applications of HTS wires

  • Oh, Sang-Soo
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.27-34
    • /
    • 2000
  • HTS wires processed by PIT method are now available for magnet applications. But, those wires can not be used over 40 K due to weak link. This leads to necessity of development of coated conductor which can retain high $J_c$ at high field in liquid nitrogen. In this paper, various technical issues and the R&D status for both PIT wires and coated conductor were discussed. The difference of coated conductor's processes were also investigated and summarized. Various requirements for a design of HTS magnets were discussed. Anisostropic $J_c$ property with respect to magnetic field was considered to determine the coil's critical current. Low n value is a critical parameter to degrade a field stability with respect to time for a persistent mode HTS magnet. The relation between the margin of operation current and n value was investigated. Prototype HTS magnets with PIT wires are being developed for various applications such as crystal growth, MRI, magnetic separator and etc. HTS magnets will come into wide use in various fields of industries if the HTS wires with a low performance cost is developed.

  • PDF

Passive shimming design with commercially available rectangular shim sheets on a cylinder for HTS NMR magnets

  • Ahn, Min Cheol
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.29-33
    • /
    • 2018
  • Although high-temperature superconducting (HTS) magnets have the potential merit of producing ultra-high field (>25 T), they have been not easy to apply to Nuclear Magnetic Resonance (NMR) because of the difficulty of field homogeneity improvement. This paper presents a design technique of passive shimming for HTS magnets. Ferromagnetic shimming design code was developed though MALAB, which includes the optimization algorithm. The proper shim element size was determined by a simulation. This design technique was verified by a case study design of a 3-T HTS magnet. We succeed to improve field homogeneity of the magnet from 634 ppm to 6.39 ppm at 10-mm diameter sphere volume. Feasibility of passive shimming for all-HTS NMR magnet was confirmed by this result.

Inductance Calculation and Speed-Power Characteristic of Interior Type Permanent Magnet Synchronous Motor by FEM (유한요소법을 이용한 매입형 영구자석 동기전동기의 인덕턴스 산정 및 속도-출력 특성)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.408-416
    • /
    • 1999
  • The characteristics of permanent magnet synchronous motor are defined by airgap flux and circuit parameters. Interior Permanent Magnet Synchronous Motor(IPMSM) has a nonlinear characteristics due to structural speciality of rotor, so it is difficult to analyze circuit parameters and field-weakening characteristics of IPMSM. This paper presents the calculation of circuit parameters by using Finite Element Method(FEM) taken into consideration of nonlinear characteristics. Using the circuit parameters by FEM, IPMSM is analyzed to field-weakening characteristics and is compared with the Equivalent Magnetic Circuit(EMC) in which lumped parameter is consideration.

  • PDF

A study on design process of HTS bulk magnet synchronous motors

  • Jaheum Koo;JuKyung Cha;Jonghoon Yoon;Seungyong Hahn
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.1-4
    • /
    • 2024
  • This study explores the use of a bulk type high-temperature superconductors (HTS) as trapped field magnets in synchronous motors. A HTS bulk is examined for its ability to generate powerful magnetic fields over a permanent magnet and to eliminate the need for a direct power supply connection compared to a tape form of HTS. A 150 kW interior-mounted bulk-type superconducting synchronous motor is designed and analyzed. The A-H formulation is used to numerical analysis. The results show superior electrical performance and weight reduction when comparing the designed model with the conventional permanent magnet synchronous motor of the same topology. This study presents HTS bulk synchronous motor's overall design process and highlights its potential in achieving relatively high power density than conventional permanent magnet synchronous motor.

Study on the Optimal Design for HTS Magnetic Levitation Magnet (고온초전도 자기부상자석의 최적설계에 관한 연구)

  • Yoon, Kyung-Yong;Bae, Duck-Kweon;Cho, Heung-Je
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.37-41
    • /
    • 2008
  • Superconducting Electrodynamic suspension(EDS) system is generated by the interaction between the magnetic field made by the induced the eddy current in the ground conductor and the moving magnetic field made by onboard superconducting magnet. The levitation force of EDS system, which is proportional to the strength of the moving magnetic field, becomes saturated according to the increase of the velocity. Especially, the levitation force is influenced by the structure of HTS magnet and ground magnet. This paper deals with the optimal design condition for the HTS levitation magnet. The 3-D numerical analysis with FEM was used to find the distribution of the magnetic field, the optimal coil structure, and the calculation of the levitation force.

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.