• Title/Summary/Keyword: Magnesium sheet

Search Result 153, Processing Time 0.031 seconds

A study for CD stud welding of Magnesium alloy for electric device case (전자기기 케이스를 위한 마그네슘 판재 스터드 용접 기술에 관한 연구)

  • Lee, Mok-Yeong;Ryu, Chung-Seon;Jang, Ung-Seong;Choe, Sang-Un
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.53-56
    • /
    • 2007
  • Magnesium sheet used in electrical device due to mobility and EMF shielding characteristics. Magnesium case by press forming was advantageous compare with conventional die casting process, because of its thin gauge of wall and surface quality. But it need to makes the boss to fix inner part or assemble the case. CD stud welding was effective way for joining the boss to the thin gauge case of the electrical devices. In this study, we investigated the performances of the magnesium boss welder To measure the process parameters such as the force and the weld current, we design the monitoring system for CD stud welding. We test the characteristics of CD stud welding for AZ31 sheets at some variables. Finally we select the optimum welding range of magnesium sheets in CD stud welding process.

  • PDF

Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet (마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

Study on the Deformation Characteristics of AZ31B Sheets in V-bending and Effect of Bottoming Process (마그네슘 합금 판재의 온간 V-굽힘에서 소재의 변형 및 보토밍 공정의 효과 분석)

  • Kim, H.W.;Yu, J.H.;Lee, C.W.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.139-144
    • /
    • 2018
  • Many studies have been conducted on the process of forming magnesium alloy sheets to reduce the body weights of vehicles. Magnesium has a lower specific gravity than steel and also has a higher specific strength. Mg alloy sheets have low formability and a lot of springback due to their limited ductility and low young's modulus. As the temperature increases, the yield strength of the material decreases. Warm forming increases the formability and minimizes the springback of a material by heating it and the die to reduce the required load at forming. In this study, the temperature of the AZ31B sheet was controlled in order to reduce springback and increase formability. However, as the temperature increased, the deformation characteristics of the material changed and the radius of curvature of the material increased. The load and springback amount required for forming were analyzed according to the temperature and the bottoming force in the bending deformation.

A Study on the Formability of Magnesium Alloy in Warm Temperature (고온상태에서 마그네슘 합금의 디프드로잉 성형성에 관한 연구)

  • Kang, Dae-Min;Hwang, Jong-Kwan;El-Morsy, A.M.;Manabe, Ken-Ichn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.84-90
    • /
    • 2003
  • Magnesium alloys have been paid attention In automotive and industries as lightweight materials, and with these materials it has been attempted at deep drawing process for assessment of formability of sheet metal. For warm deep drawing process with a local heating and cooling technique, both die and blank holder were heated at warm temperature while the punch was kept at room temperature by cooling water. Warm deep-drawing process with considering heat transfer was simulated by finite element method to investigate the improvement of deep-drawability and temperature distribution of Mg alloy sheet. The effect of sham rate sensitivity index on the deformation profile was considered in this work and the simulation results revealed that considering heat transfer is very effective for deep-drawability of Mg alloy. The deformed blank In considering heat transfer was drawn successfully without any localized thinning and the cup height is higher in contrast to results of simulations in considering no heat transfer.

  • PDF

Formability of AZ31 magnesium sheet alloy of warm deep drawing (AZ31 마그네슘합금의 온간디프드로잉시 판재성형특성)

  • Rhee M. S.;Kang D. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.377-380
    • /
    • 2005
  • In this study, the experiments of warm deep drawing were done with heated die, and with heated die and cooled punch in order to investigate the formability of ZA31 magnesium sheet alloy of warm deep drawing. For this, warm deep drawing experiments were executed under various temperature, punch velocity and blankholder force. The results of warm deep drawing with heated die showed that fracture occurred punch part at punch velocity of 75mm/min and punch stroke of 10mm under temperature of $100^{\circ}C\~250^{\circ}C$, but did not occure under temperature of $275^{\circ}C\~400^{\circ}C$. And fracture at punch stroke of 25mm did not occurre at punch part under punch velocity of 30mm/min and $250^{\circ}C$, but occured under punch velocity of 75 and 125 mm/min. Also the results of warm deep drawing with heated die and cooled punch showed that the temperature happening maximum height under punch velocity of 10-100mm/min was $225-250^{\circ}C$. And necking occurred at punch shoulder under $20\~150^{\circ}C$, but at die wall under $200\~300^{\circ}C$.

  • PDF

The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet (변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구)

  • Kim, D.O.;Kang, C.W.;Lee, S.Y.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

Deep drawing of AZ31 alloy sheet in the warm forming temperature (AZ31 합금의 온간 디프 드로잉에 관한 연구)

  • KIM M. C.;LEE Y. S.;KWON Y. N.;LEE J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.175-179
    • /
    • 2004
  • Since the formability of AZ31 magnesium alloy is not good in room temperature, it is known that high temperature forming is advantageous. However, many studies are necessary to find the proper forming temperature for Mg alloy. In this study, experimental and FEM analysis are performed to investigate the forming temperature for AZ31 sheet. The deep drawing process of square cup is used in forming experiment and FEA. The investigations are performed in three forming temperature, room temperature, $250^{\circ}C\;and\;400^{\circ}C$. The square cup is well formed in $250^{\circ}C$ forming temperature, on the other hand, the crack and failure is presented in corner section in room and $250^{\circ}C$ forming temperature. The main cause is investigated as the effect of hardening range by the experimental and FEM results.

  • PDF

Texture Evolution of Asymmetrically Rolled Mg Alloy Sheets (비대칭 압연한 마그네슘 합금판재의 집합조직 발달)

  • Jeong, H.T.;Lee, K.D.;Lee, S.Y.;Ha, T.K.;Choe, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.64-66
    • /
    • 2007
  • Asymmetric rolling, where circumferential velocities of the upper and lower rolls differ, can be one method to change texture of magnesium alloy sheet by introducing shear deformation throughout the thickness of a sheet. In this study, the texture, microstructure and mechanical properties of AZ31 Mg sheets has been investigated during the symmetrical rolling procedure and the asymmetric rolling procedures of different roll speeds with different roll diameters. Texture of Mg alloy sheets were evaluated by using X-ray diffraction and ODFs were calculated using ADC method. The major texture of rolled specimens can be expressed by ND//(0001) fiber texture. The major fiber texture changed according to the rolling processes and such a slight difference of texture changes the formability of sheets. The mechanical properties were enhanced during asymmetrical rolling.

  • PDF