• Title/Summary/Keyword: Magnesium hydroxide($Mg(OH)_2$)

Search Result 46, Processing Time 2.02 seconds

Shape Changes of Mg(OH)2 with Different Magnesium Precursors in Low Temperature (전구체에 따른 Mg(OH)2의 저온합성에서 형상변화)

  • Kang, Kuk-Hyoun;Jeong, Sun-In;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2049-2054
    • /
    • 2013
  • Recently, magnesium hydroxide ($Mg(OH)_2$) has many applications in various field, due to its outstanding characteristics such as a nontoxic, noncorrosive and thermal stable properties. In this study, different shapes of flower and flake type magnesium hydroxide were synthesized by precipitation method at room temperature using $MgSO_4$, $MgCl_2$ and $Mg(NO_3)_2$ as magnesium sources, NaOH and $NH_3$ as alkaline sources. Influence of synthesis on the morphological characteristics, sizes and shapes of magnesium hydroxide particles, was investigated, such as different precursors and parameters. The shape of magnesium hydroxide depend on magnesium and alkali sources. Average size of flower particle had about $1{\mu}m$, and flake had about 20 ~ 50 nm. The synthesised magnesium hydroxide groups were characterized by XRD, FE-SEM, FT-IR, EDS, PSA and TG.

Polyimide grafted magnesium hydroxide for $CO_2$ Adsorption (폴리이미드 그라프팅 수산화마그네슘의 이산화탄소 흡수)

  • Hemalatha, Pushparaj;Ganesh, Mani;Peng, Mei Mei;Kim, Dea-Kyung;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12a
    • /
    • pp.364-366
    • /
    • 2011
  • Polyimide (PI) grafted magnesium hydroxide was synthesised and characterised by XRD, TGA, SEM analysis. XRD patterns of $PI/Mg(OH)_2$ carried the peaks due to $Mg(OH)_2$ with decreased intensity. The $CO_2$ adsorption capacity of $PI/Mg(OH)_2$ at $50^{\circ}C$ was found to be 14 wt% revealing chemisorption of $CO_2$ on $Mg(OH)_2$ which could be regenerated at higher temperatures.

  • PDF

Synthesis and Surface Modification of Magnesium Hydroxide by Hydrothermal Method (수열법에 의한 수산화 마그네슘의 합성과 표면개질)

  • Lee, Hae-Young;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.149-158
    • /
    • 2012
  • Magnesium hydroxide[$Mg(OH)_2$] was prepared by hydrothermal method using oleic acid as surface modifier. $Mg(OH)_2$ particles exhibit flake morphology with micrometer in size and the surface modification starts from the reaction of $C_{17}H_{33}COO^-$ group, derived from oleic acid molecule in alkaline environments. It is found that hydrothermal treatment conditions such as pH, temperature and reaction time are important for the control of the morphology and properties of surface modified magnesium hydroxide. The obtained magnesium hydroxide groups were characterized by FE-SEM, XRD, FT-IR, TGA. The dispersion in organic solution was determined by sedimentation test and compared with the result of raw $Mg(OH)_2$.

Preparation of Mg(OH)2-Melamine Core-Shell Particle and Its Flame Retardant Property (멜라민이 코팅된 수산화마그네슘 입자의 제조와 그 복합입자의 난연특성)

  • Lim, Hyung-Mi;Yoon, Joon-Ho;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.691-698
    • /
    • 2010
  • Magnesium hydroxide-melamine core-shell particles were prepared through the coating of melamine monomer on the surface of magnesium hydroxide in the presence of phosphoric acid. The melamine monomer was dissolved in hot water but recrystallized on the surface of magnesium hydroxide by quenching to room temperature in the presence of phosphoric acid. The core-shell particle was applied to low-density polyethylene/ ethylene vinyl acetate (LDPE/EVA) resin by melt-compounding at $180^{\circ}C$ as flame retardant. The effect of magnesium hydroxide and melamine content has been studied on the flame retardancy of the core-shell particles in LDPE/EVA resin according to the preparation process and purity of magnesium hydroxide. Magnesium hydroxide prepared with sodium hydroxide rather than with ammonia solution revealed higher flame retardancy in core-shell particles with LDPE/EVA resin. At 50 wt% loading of flame retardant, core-shell particles revealed higher flame retardancy compared to that of the exclusive magnesium hydroxide in LDPE/EVA composite, and it was possible to satisfy the V0 grade in the UL-94 vertical test. The synergistic flame retardant effect of magnesium hydroxide and melamine core-shell particles was explained as being due to the endothermic decomposition of magnesium hydroxide and melamine, which was followed by the evolution of water from the magnesium hydroxide and porous char formation due to reactive nitrogen compounds, and carbon dioxide generated from melamine.

Synthesis of Magnesium Hydroxide and Surface Modification by Sorbitol Surfactants (수산화마그네슘의 합성과 솔비톨계 계면활성제를 이용한 표면개질)

  • Kang, Kuk-Hyoun;Hyun, Mi-Ho;Ryu, Kun-Sung;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.92-100
    • /
    • 2014
  • Hydrophobic magnesium hydroxide [$Mg(OH)_2$] was modified by hydrothermal method using non-ionic sorbitol surfactant with Span series. Mganesium chloride [$MgCl_2$] and sodium hydroxide [NaOH] were used for synthesis of $Mg(OH)_2$. Also non-ionic surfactant were added as a stabilizer, dispersant and surface modifier. Addition of non-ionic surfactant was favourable to obtain small sized $Mg(OH)_2$ particles with better dispersibility and hydrophobic property of $Mg(OH)_2$ particles. The obtained product were characterized by particle size analysis(PSA), scanning electron microscope(SEM), energy dispersive spectroscopy(EDS), x-ray diffraction(XRD) and fourier transform infrared spectroscopy(FT-IR). The results show that the product are prepared with this method has a well hydrophobic properties and dispersity compared with unmodified $Mg(OH)_2$ particles. The improve properties of surface modified $Mg(OH)_2$ particles were also verified by similarity synthesizing under slightly different conditions.

Effect of MgO and NH4OH on Formation of 5Mg(OH)2·MgSO4·3H2O Whiskers (침상형 5Mg(OH)2·MgSO4·3H2O 형성에 관한 MgO와 NH4OH 영향)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Hyung-Tae;Kim, Kyung-Ja;Kim, Young-Woong;Kim, Woong;Kim, Yoo-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • Magnesium hydroxide sulfate hydrate whiskers ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH) were prepared using hydrothermal reaction with magnesium oxide (MgO) and magnesium sulfate ($MgSO_4{\cdot}7H_2O$) as the starting materials. The effects of the molar ratio of $MgSO_4$/MgO and amount of $NH_4OH$ were studied. As a result, 513 MHSH whiskers co-existed with hexagonal plate $Mg(OH)_2$ at low concentration of $SO_4^{2-}$. The molar ratio of $MgSO_4{\cdot}7H_2O$/MgO was 7:1, uniform 513 MHSH whiskers were formed without impurity such as $Mg(OH)_2$. Appropriate amount of $NH_4OH$ has affected to formation of high quality MHSH. Their morphologies and structures were determined by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) and thermo-gravimetric analyzer (TGA).

Effect of MgSO4/MgO on the Synthesis of 5Mg(OH)2·MgSO4·3H2O Whiskers using One-step Ambient Pressure (상압 공정을 이용한 침상형 5Mg(OH)2·MgSO4·3H2O 합성에 대한 MgSO4/MgO 효과)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Hyung Tae;Kim, YooJin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2013
  • Magnesium hydroxide sulfate hydrate ($5Mg(OH)_2.MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH) whiskers were synthesized using MgO and $MgSO_4.7H_2O$ as reactants without addition of basic solution. Previously, MHSH whiskers were prepared by hydrothermal method using $MgSO_4$ in aqueous ammonia. In this work, for the first time, we synthesized a high purity MHSH via ambient pressure. In addition, a high molar ratio of $MgSO_4$ : MgO is an important key to the formation of high purity MHSH. Also, it was possible to prepare whiskers with high aspect ratio using an increasing reaction time in the reaction between the remaining $SO_4^{2-}$ ions and the ${Mg(OH)_6}^{4-}$ fragment, finally producing one-dimensional whiskers.

Preparation of Mg(OH)2 Dispersion and its Application to PET Non-woven Textile as Flame Retardant Coating (수산화마그네슘 분산상의 제조와 PET 부직포 섬유의 난연 코팅제 적용)

  • Lim, Hyung-Mi;Hyun, Mi-Kyung;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.537-542
    • /
    • 2011
  • Magnesium hydroxide as a non-halogen flame retardant has increasing attention due to its non-toxicity, high decomposition temperature and smoke suppressant ability during combustion. For the application of magnesium hydroxide retardant to the textile by soaking and coating method, the prerequisite for the coating is a small particle size, stable dispersion, and adhesion to the textile. The dispersion of $Mg(OH)_2$ particles and stability of the coating was checked by monitoring the change of transmittance and backscattering by varying the types of dispersion agents, binder, solvent, and $Mg(OH)_2$ source, and their compositions in the coating. The $Mg(OH)_2$ dispersion coating was applied to PET(poly(ethylene terephthalate)) non-woven textile. The physical properties are characterized by surface morphology, amount of coating, particle dispersion, and adhesion test. The flame retardant $Mg(OH)_2$ coated textile has been compared by limited oxygen index(LOI) and thermal gravimetry and differential scanning calorimetry(TG-DSC). It was found that phosphorous additive may give synergistic effect on $Mg(OH)_2$ flame retardant coating to make the flame retardant PET non-woven textile.

Flame Retardancy & Mechanical Properties of Mixed Waste $Plastic/Mg(OH)_{2}$ Composites Reinforced with PUB Powder (PUB 분말이 충전된 혼합폐플라스틱/$Mg(OH)_{2}$ 복합소재의 난연성 및 기계적 특성)

  • Jung, Ki-Chang;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.65-71
    • /
    • 2006
  • Flame retardancy and mechanical properties of polyolefinic mixed waste plastics/filler composites were investigated by using inorganic flame retardant(magnesium hydroxide) and PUB(polyurethane block) powder generated from cryogenic insulation process. All composites were obtained by extrusion and after compression molding. The effect of PUB powder on the properties of the composites was studied by tensile and izod impact test, morphology studies and flammability as LOI and UL94 vertical burning test and smoke density. The objective of this work is to obtain good mechanical properties from recycled PP composites with $Mg(OH)_{2}/PUB$ powder as fillers and optimum cost-performance balance, in addition to flame retardant characteristics.

A Study on the Preparation of Thermoplastic Powder Coating Material and Its Flame Retardancy (열가소성 분말 코팅소재 제조 및 난연특성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.45-52
    • /
    • 2010
  • The purpose of this study is application to flame retardant powder coating(FRPC) material consisting of ammonium polyphosphate(APP) and magnesium hydroxide($Mg(OH)_2$) as a halogen free flame retardant into thermoplastic resin(LDPE-g-MAH). For improvement of adhesion, LDPE-g-MAH was synthesized from low density polyethylene(LDPE) and maleic anhydride(MAH). The mechanical properties as melt flow index, pencil hardness, cross-hatch adhesion and impact resistance of FRPC were measured. Also, the limited oxygen index(LOI) values were measured 17.3vol%, 31.1vol% and 33.7vol% for LDPE-g-MAH, FRPC-3(APP 15wt%, $Mg(OH)_2$ 15wt%) and FRPC-5(APP 30 wt%), respectively. The thermo gravimetry/differential thermal analysis(TG/DTA) of FPRC-3 was observed endothermic peak at $340^{\circ}C$ and $450^{\circ}C$, it was confirmed predominant thermal stability though the wide temperature range by APP and $Mg(OH)_2$. It was showed V-0 grade for FRPC-3 and FRPC-4(APP 20wt%, $Mg(OH)_2$ 10wt%) that a char formation and drip suppressing effect, and combustion time reduced by UL94(vertical burning test). It was confirmed that flame retardancy was improved with the synergy effect because of char formation by APP and $Mg(OH)_2$.