• Title/Summary/Keyword: Magnesium dissolution

Search Result 52, Processing Time 0.028 seconds

Solidification of high level waste using magnesium potassium phosphate compound

  • Vinokurov, Sergey E.;Kulikova, Svetlana A.;Myasoedov, Boris F.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.755-760
    • /
    • 2019
  • Compound samples based on the mineral-like magnesium potassium phosphate matrix $MgKPO_4{\times}6H_2O$ were synthesized by solidification of high level waste surrogate. Phase composition and structure of synthesized samples were studied by XRD and SEM methods. Compressive strength of the compounds is $12{\pm}3MPa$. Coefficient of thermal expansion of the samples in the range $250-550^{\circ}C$ is $(11.6{\pm}0.3){\times}10^{-6}1/^{\circ}C$, and coefficient of thermal conductivity in the range $20-500^{\circ}C$ is $0.5W/(m{\times}K)$. Differential leaching rate of elements from the compound, $g/(cm^2{\times}day)$: $Mg-6.7{\times}10^{-6}$, $K-3.0{\times}10^{-4}$, $P-1.2{\times}10^{-4}$, $^{137}Cs-4.6{\times}10^{-7}$; $^{90}Sr-9.6{\times}10^{-7}$; $^{239}Pu-3.7{\times}10^{-9}$, $^{241}Am-9.6{\times}10^{-10}$. Leaching mechanism of radionuclides from the samples at the first 1-2 weeks of the leaching test is determined by dissolution ($^{137}Cs$), wash off ($^{90}Sr$) or diffusion ($^{239}Pu$ and $^{241}Am$) from the compound surface, and when the tests continue to 90-91 days - by surface layer depletion of compound. Since the composition and physico-chemical properties of the compound after irradiation with an electron beam (absorbed dose of 1 MGy) are constant the radiation resistance of compound was established.

Pharmaceutical studies on the polymorphism of hydrochlorothiazide

  • Kim, Bong-Hee;Kim, Johng-Kap
    • Archives of Pharmacal Research
    • /
    • v.7 no.1
    • /
    • pp.47-52
    • /
    • 1984
  • Four polymorphic forms (I, II, III and IV) of hydrochlorothiazide have been characterized on the basis of x-ray diffractometry and differential thermal analysis. Form I was obtained by crystallization from N, N-dimethylformamide and Form II was crystallized from hot methanol. Form III was precipitated from sodium hydroxide aqueous solution by treatment with hydrochloric acid and Form IV was crystallized from 50% methanol. The metastable form I was a most stable form among four polymorphs, which was stable more than ten months at room temperature. The thermodynamic parameters such as heat of solution, enthalpy, entropy, free energy difference and transition temperature were determined by the measurement of intrinsic dissolution rate. The transition temperature and the heat of transition between the metastable Form I an Form II were determined to be $299.15^{\circ}$K and 5.03 Kcal/mole, respectively and free energy difference ($\delta$ F) was 302. 13 cal/mole. Diuretic action of these four polymorphic forms was also evaluated by monitoring the difference in urinary excretion of sodium, potassium and magnesium in rats.

  • PDF

Manufacturing and Characteristics of Binderless Briquette for In -Mold Melt Treatment of Ductile iron (구상흑연주철의 인몰드 용탕처리용 무점결제 브리켓의 제조 및 특성)

  • Baglyuk, G.A.;Shin, Je-Sik;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.192-197
    • /
    • 2009
  • The manufacturing and application characteristics of binderless briquette for in-mold melt treatment of ductile cast iron were investigated. The porosity of briquette was decreased with increased magnesium content. The dissolution rate was increased with the latter in the range of 5~10%. The fluxing effect was the best when 5%$CaF_2$ was added. The optimum composition of the binderless briquette was obtained.

Development of Solid Self-nanoemulsifying Drug Delivery Systems of Ticagrelor Using Porous Carriers (다공성의 캐리어를 이용한 티카그렐러 함유 고형의 자가 나노유화 약물전달시스템 개발)

  • Choi, Hyung Joo;Kim, Kyeong Soo
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.502-510
    • /
    • 2021
  • The objective of this study was to develop a novel ticagrelor-loaded self-nanoemulsifying drug delivery system with an enhanced solubility and dissolution rate. Numerous oils and surfactants were screened, then medium chain triglyceride (MCT) oil and the surfactants polyoxyethylene sorbitan monooleate (Tween 80) and Labrafil M1944CS were selected for the preparation of the ticagrelor-loaded self-nanoemulsifying drug delivery system. A pseudo-ternary phase diagram was constructed to detect the nanoemulsion region. Of the various formulations tested, the liquid SNEDDS, composed of MCT (oil), Tween 80 (surfactant), and Labrafil M1944CS (cosurfactant) at a weight ratio of 20/70/10 produced the smallest emulsion droplet size (around 20.56±0.70 nm). Then, particle size, polydispersity, and zeta potential were measured using drugs containing liquid SNEDDS. The selected ticagrelor-loaded liquid SNEDDS was spray-dried to convert it into a ticagrelor-loaded solid SNEDDS with a suitable inert carrier, such as silicon dioxide, calcium silicate, or magnesium aluminometasilicate. The solid SNEDDS was characterized by scanning electron microscopy, transmission electron microscopy, and in vitro dissolution studies. SEM, PXRD, and DSC results suggested that amorphous ticagrelor was present in the solid SNEDDS. Also, the solid SNEDDS significantly increased the dissolution rate of ticagrelor. In particular, the emulsion particle size and the polydispersity index of the solid SNEDDS using silicon dioxide (SS1) as a carrier was the smallest among the evaluated solid SNEDDS, and the flowability and compressibility result of the SS1 was the most suitable for the manufacturing of solid dosage forms. Therefore, solid SNEDDS using silicon dioxide (SS1) could be a potential nano-sized drug delivery system for the poorly water-soluble drug ticagrelor.

The Effect of Organic Acids on Mineral Extraction from Chicken Thigh Bone Stock (유기산 첨가가 닭뼈(대퇴골) 스톡(stock)에 용출되는 무기질량에 미치는 영향)

  • 이승언;남출항구;대곡귀미자;최석현;한재숙
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.12 no.5
    • /
    • pp.379-387
    • /
    • 2002
  • The focus of this study was the influence of organic acids such as acetic, citric and malic acid on the dissolution of calcium (Ca), magnesium (Mg), and phosphorus (P) on chicken thigh bone. As the concentration (0, 0.5, 1, 2, 4%) of acetic, citric, and malic acid increased, the resultant contents of calcium, magnesium, and phosphorus were higher than that of the control. When the boiling time (2, 4, 6, 8, 12 hours) was increased, dissolved amounts of several minerals from the chicken thigh bone increased. Calcium dissolved the most when chicken stock was boiled for 12 hours with 4% of malic acid added. In addition to minerals, amino acids and proteins were further extracted by adding organic acids. The soup stock which contains minerals such as calcium, can be obtained by boiling the chicken thigh bone for 12 hours with an organic acid.

  • PDF

Corrosion Behavior of As-Cast and Solution-Treated AZ91-4%RE Magnesium Alloy (주조 상태 및 용체화처리한 AZ91-4%RE 마그네슘 합금의 부식 거동)

  • Han, Jin-Gu;Hyun, Soong-Keun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.5
    • /
    • pp.220-230
    • /
    • 2018
  • The objective of this study is to investigate the effect of solution treatment on the microstructure and corrosion behavior of cast AZ91-4%RE magnesium alloy. In the as-cast state, microstructure of the AZ91-4%RE alloy was characterized by intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_{11}RE_3$ and $Al_2RE$ phase particles distributed in ${\alpha}-(Mg)$ matrix. After solution treatment, the ${\beta}$ particles with low melting point dissolved into the matrix, but Al-RE phases still remained due to their high thermal stabilities. It was found from the immersion and potentiodynamic polarization tests that corrosion rate of the AZ91-4%RE alloy increased after the solution treatment. On the contrary, EIS tests and EDS compositional analyses on the surface corrosion products indicated that the stability of the corrosion product was improved after the solution treatment. Examinations on the corroded microstructures for the ascast and solution-treated samples revealed that dissolution of the ${\beta}$ particles which play a beneficial role in suppressing corrosion propagation, would be responsible for the deterioration of corrosion resistance after the solution treatment. This result implies that the microstructural features such as amount, size and distribution of secondary phases that determine corrosion mechanism, are more influential on the corrosion rate in comparison with the stability of surface corrosion product.

Development of a novel combination tablet containing silodosin and solifenacin succinate for the treatment of urination disorder (배뇨 장애 치료를 위한 실로도신과 솔리페나신 숙신산염 함유한 새로운 복합 정제 개발)

  • Choi, Hyung-Joo;Lee, Jeong-Gyun;Kim, Kyeong Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.323-332
    • /
    • 2021
  • This study was undertaken to develop a new combination tablet containing silodosin and solifenacin succinate for treating urination disorders, for which a simultaneous analytical method of silodosin and solifenacin succinate was established. The aqueous solubility of silodosin and solifenacin succinate was determined to be higher than 1 mg/ml in various buffers, and dissolution of the silodosin and solifenacin succinate commercial products was accomplished within 30 minutes. The drug-excipients compatibility test was subsequently evaluated using differential scanning calorimetry. Excipients without compatibility were selected, and various combination formulations were prepared applying the wet granulation method. Of these, the formulation comprising silodosin, solifenacin succinate, lactose hydrate, MCC PH101, sodium lauryl sulfate (SLS), Povidone K30, crospovidone and magnesium stearate, having a weight ratio of 8/10/56/112/2/6/6/2, respectively, showed equivalence comparative to the dissolution achieved with the commercial products of silodosin (Thrupas tab) and solifenacin succinate (Vesicare tab). Thus, we propose that compared to the currently available commercial products, this novel combination tablet containing silodosin and solifenacin succinate is an effective alternative for the treatment of urination disorders.

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Design and Optimization of Solid Dispersed Osmotic Pump Tablets of Aceclofenac, A Better Approach to Treat Arthritis

  • Edavalath, Sudeesh;Rao, B. Prakash
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.217-225
    • /
    • 2011
  • The aim of this work was to prepare porous osmotic pump tablets for controlled delivery of Aceclofenac. Aceclofenac solid dispersion was prepared to improve the solubility by using the drug - carrier (Mannitol) ratio of 1:1. The osmotic pump tablets were prepared using the solid dispersed product of Aceclofenac. The formulation contains potassium chloride as osmotic agent, cellulose acetate as semipermeable membrane, poly ethylene glycol (PEG 4000) as pore former and sodium lauryl sulphate (SLS) as solubility enhancer. The formulations were designed by the general factors such as osmotic agent and pore former. All formulations were evaluated for various physical parameters and, the in vitro release studies were conducted as per USP. The drug release kinetic studies such as zero order, first order, and Higuchi and Korsmeyer peppas were determined and compared. All the formulations gave more controlled release compared to the marketed tablet studied. Numerical optimization techniques were applied to found out the best formulation by considering the parameter of in vitro drug release kinetics and dissolution profile standards. It was concluded that the porous osmotic pump tablets (F7) composed of Aceclofenac solid dispersion/Potassium chloride/Lactose/Sodium lauryl sulphate/Magnesium Stearate (400/40/95/10/5, mg/tab) and coating composition with Cellulose acetate/ PEG 4000 (60/40 %w/w) is the most satisfactory formulation. The porous osmotic pump tablets provide prolonged, controlled, and gastrointestinal environment-independent drug release.

Effect of Solution Treatment on Corrosion Behavior of AZ91-2%Ca Magnesium Casting Alloy (주조용 AZ91-2%Ca 마그네슘 합금의 부식 거동에 미치는 용체화처리의 영향)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.190-199
    • /
    • 2015
  • The study is intended to investigate the effect of solution treatment on microstructure and corrosion behavior of AZ91(Mg-9%Al-1%Zn-0.3%Mn)-2%Ca casting alloy. In as-cast state, the AZ91-2%Ca alloy consisted of intermetallic ${\beta}(Mg_{17}Al_{12})$, $Al_8Mn_5$ and $Al_2Ca$ phases in ${\alpha}-(Mg)$ matrix. After the solution treatment, Al within the ${\alpha}-(Mg)$ matrix was distributed more homogeneously, along with the slight decrease in the total amount of intermetallic compounds. The corrosion resistance of the AZ91-2%Ca alloy was improved after the solution treatment. The microstructural examinations for the solution-treated samples revealed that the better corrosion resistance may well be related to the incorporation of more oxides and hydroxides such as $Al_2O_3$, $Al(OH)_3$, CaO and $Ca(OH)_2$ into the surface corrosion product without dissolution of the intermetallic phases along the grain boundaries.