• Title/Summary/Keyword: Magma

Search Result 385, Processing Time 0.019 seconds

Petrochemistry on igneous rocks in the Mt. Mudeung area (무등산 지역에 분포하는 화성암류의 암석화학)

  • 김용준;박재봉;박병규
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.214-233
    • /
    • 2002
  • Igneous rocks of Mt. Mudeung area are composed of Pre-Cambrian granite gneiss, Triassic hornblende-biotite granodiorite, Jurassic quartz diorite and Cretaceous igneous rocks. The Cretaceous igneous rocks consist of volcanic rocks (Hwasun andesite, Mudeung-san dacite and Dogok rhyolite) and granitic rocks (micrograpic granite and quartz porphyry). Major elements of the Cretaceous igneous rocks represent calc-alkaline rock series and correspond to a series of differentiated products from cogenetic magma. Igneous activity of Mt. Mudeung area started from volcanic activity, and continued to intrusive activity at end of the Cretaceous. In chondrite normalized REE pattern, most of igneous rocks of Mt. Mudeung area show similar pattern of Eu (-) anomaly. This is a characteristic feature of granite in continental margin by tectonic movement. Variation diagrams of total REE vs. La/Yb V vs. SiO$_2$ indicate differentiation and magnetite fractionation sequential trend of Hwasun andesite longrightarrowMudeungsan dacitelongrightarrowquartz porphyry. In mineral composition of these igneous rocks in mt. Mudeung area, composition of plagioclase and biotite coincidence with variation of whole rock composition, and emplacement and consolidation of magma is about 15 km (about 4.9 Kbar) in Jurassic quartz diorite and 2.0~3.2 km (0.6~1.0 Kbar) in Triassic hornblende-biotite granodiorite used by amphibolite geobarometer. Parental magma type of these granitic rocks of nt. Mudeung area corresponds to VAG field in Pearce diagram, and I-type in ACF diagram.

Glass Inclusions in Quartz Phenocrysts of Tuff from Sunshin Au Mining Area, Haenam, Jeonnam. (전남 해남의 순신 금광산 지역에 산출하는 응회질암에 포획된 유리포유물)

  • Lee, Seung-Yeol;Yang, Kyoung-Hee;Jeon, Byung-Geun;Bak, Gil;Koh, Sang-Mo;Seo, Jeong-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.337-348
    • /
    • 2009
  • Clear and homogeneous glass inclusions are well preserved at the rim of the quartz phenocrysts of tuff from Sunshin epithermal Au deposit, Haenam, although the host rocks experienced extensive silicification and argillic alteration. Glass inclusion vary in size from $5\;{\mu}m$ to larger than $200\;{\mu}m$ consisting of glass(60~80 vol%) + vapor bubble(15~30 vol%) $\pm$ daughter crystals(<10 vol%). Most of glass inclusions are cubic to rectangular in shape, indicating that the host quartz grew in the stability field of $\beta$-quartz. All the glass inclusions appear to be primary. Glass inclusions are composed of highly evolved high-K calc-alkaline rhyolites, which can represent the final liquidus phase of the magma system. The $Au_2O_3$ concentration (<0.30 wt%) is trivial in the glass, indicating there was no enrichment in the final residual melt. Textural characteristics suggest that magma was water-saturated shortly before or during the eruption. $H_2O$ content of the glass (ca. 2-4 wt%) suggests a water saturation pressure($P_{H2O}$) of about 300-900 bars. This pressure implies a minimum depth of 0.8-2.5 km for the magma chamber.

Petrological characteristics of the Yeongdeok granite (영덕화강암의 암석학적 특징)

  • Woo, Hyeon-Dong;Jang, Yun-Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.31-43
    • /
    • 2014
  • The Yeongdeok granite emplaced in the eastern Yeongyang subbasin is typically a medium- to coarse-grained massive biotite granite. It intruded into Precambrian schist & gneiss complex and is unconformably overlain by Cretaceous sedimentary rocks. In this study, we attempt to investigate the magma type which formed Yeongdeok granite and estimate the emplacement depth using Al-in-hornblende geobarometer to mineral composition. According to the magma fractionation, $TiO_2$, $Al_2O_3$, $Fe_2O_3{^*}$, FeO, $Fe_2O_3$, MnO, MgO, CaO, $Na_2O$ and $P_2O_5$ show positive trend but $K_2O$ indicate negative trend with $SiO_2$ contents. Those are identified as calc-alkaline series in AFM diagram and show the chemical characteristics of the I-type magma through the oxidation tendency of the iron ion and the portion of the alkaline composition. When calculated using the equation of Hollister et al. (1987), the emplacement depths of the Yeongdeok granite range from 8.98 to 17.19 km and average depth was estimated 13.03 km approximately.

Petrology on the Late Miocene Basalts in Goseong-gun, Gangwon Province (강원도 고성군 일대의 후기 마이오세 현무암의 암석학적 연구)

  • Koh Jeong Seon;Yun Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.78-92
    • /
    • 2005
  • Petrographical and petrochemical analyses for late Miocene basalts in Goseong-gun area. Gangwon province, were carried out to interpret the characteristics and the origin of magma. The basaltic rocks occurred as plug-dome in the summit of several small mountain and developed columnar jointing with pyroxene-megacryst bearing porphyritic texture. And the basalt contains xenoliths of biotite granite (basement rocks), gabbro (lower crustal origin) and Iherzolite(upper mantle origin). The basalts belong to the alkaline basalt field in TAS diagram and partly belong to picrobasalt and trachybasalt field. On the tectonomagmatic discrimination diagram f3r basalt in the Goseong-gun area. they fall into the fields for the within plate and oceanic island basalt. The characteristics of trace elements and REEs shows that primary magma for the basalt magma would have been derived from partial melting of garnet-peridotite mantle. This late Miocene basalt volcanism is related to the hot spot within the palte.

Petrology of the Cretaceous Volcanic Rocks in Eastern Part of the Kyeongsan Caldera (경산칼데라 동부지역에 분포하는 백악기 화산암류의 암석학적 특징)

  • Park Sung-Ok;Jang Yun-Deuk;Hwang Sang-Koo;Kim Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.90-105
    • /
    • 2006
  • The Cretaceous volcanic rocks in the study area represented by andesitic rocks occupy eastern part of the Kyeongsan Caldera. The volcanic rocks comprise andesite I, andesitic tuff, andesite II, and andesitic tuff breccia in their stratigraphic succession, and andesitic porphyry. Andesite I is distinguished from andesite II in their color, texture, phenocryst mineralogy and petrochemisty. In outcrops, andesite I is compact and dark-green, and andesite II is brick red in color and porphyritic in texture. In their phenocryst mineralogy, andesite I contains olivine phenocryst in addition to plagioclase and pyroxene which occur in both of andesites. Compared to andesite II, andesite I is higher in $SiO_2$ and $K_2O$ contents and lower in CaO, MgO, MnO, $TiO_2,\;Fe_2O_3$, and $P_2O_5$. Major elements petrochemistry shows that magma series of the volcanic rocks spread widely from calc-alkaline to alkaline series. On the other hand, immobile trace elements petrochemistry shows that the magma series is calc-alkaline without exception, suggesting that the volcanics has experienced more or less alkali enrichment after their eruption. Trace element diagrams for discrimination of tectonic setting show that the volcanics of the study area might be originated from calc-alkaline continental volcanic arc.

Reversely Zoned Compositional Variations and their Origins of the Andong Pluton, Andong Batholith, Korea (안동심성암체의 역누대 초성변화와 그 성인)

  • 황상구;이보현
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.75-95
    • /
    • 2002
  • The Andong pluton in the Andong Batholith is composed of comagmatic plutonic rocks, in which the lithofacies comprise hornblende biotite tonalite in the central paft biotite granodiorite in the marginal paft and porphyritic biotite granite at the topside (noJthea~tern paft) of the pluton. The pluton is petrographically and petrochemically zoned, having more mafic center than margin and topside. Distribution pallern of the lithofacies represents a reverse zoning in the pluton. Modal and chemical data in the pluton show progressive and gradual compositional variations from the centrer via the margin to the topside. Quartz and K-teldspar increase toward the topside of the pluton, whereas hornblende, biotite and color index increase toward the center. The bulk composition in the pluton is also reversely zoned, with high $Si0_2$ and $K_{2}O$ in the topside facies, and high MnO, CaO, $Ti0_2$, $Fe_{2}O_{3}$t, MgO and $P_{2}O_{5}$ in the central facies. The reverse zoning is also evident in higher Cr. V, Ni, Sc and Sr of the more mafic tonalite in the interior. The reversely zoned pluton results from remobilization (resurgence) of the lower more mafic compositional zone into the upper more felsic zones of the pluton modified by thennogravitational diffusion and fractional crystallization. In the initial stages of evolution, the pluton was a petrochemical system that fonned chemical compositional zonation with mafic tonalitic magma in the lower. granodioritic one in the middle and granitic one in the upper paft of the magma chamber. Periodic influxes of more mafic magma from the ba~e resulted in mingling of liquids and redistribution of minerals, and may have triggered the remobilil.ation of the lower compositional zone into the upper more felsic zones.

Surface Deformation and Behavior of Magma Activity Using EDM (EDM을 활용한 지표변화율과 마그마 활동 양상 변화 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.71-81
    • /
    • 2013
  • Measuring the distance between benchmarks placed on a volcano tens to thousands of meters apart can sometimes pinpoint where and when magma is rising toward the surface. Rising magma will sometimes push overlying rocks upward or shove them aside. In either case, one part of the volcano may actually move horizontally relative to another part from as little as a few millimeters to as much as several tens of meters. The challenge in measuring such changes with an electronic distance meter is putting benchmarks in the right places and making frequent measurements between pairs of benchmarks. An electronic distance meter is an instrument that both sends and receives an electromagnetic signal. Depending on the distance between the EDM and reflector, the wavelength of the returned signal will be out of phase with the transmitted signal. The instrument compares the phase of the transmitted and received signals and measures the phase difference electronically. There is a wide range of EDM capabilities in range and precision, but for volcano monitoring purposes, short-range (less than 10 km) to medium-range (less than 50 km) EDM's are typically used. Short-range EDM's transmit and receive the near visible infrared part of the electromagnetic spectrum for measuring distances with an accuracy of about 5 mm.

Geochemical Studies on Petrogenesis of the Cretaceous Myeongseongsan Granite in the Northwestern Gyeonggi Massif (경기육괴 북서부에 분포하는 백악기 명성산 화강암의 성인에 대한 지화학적 연구)

  • Yi, Eun Ji;Park, Ha Eun;Park, Young-Rok
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.327-339
    • /
    • 2017
  • The Cretaceous Myeongseongsan Granite in the northwestern Gyeonggi Massif consists of a major pale pink-colored biotite monzogranite and a minor white-colored biotite alkaligranite. Low Sr and high Ba concentrations, negative Eu-anomalies in REE plot, negative Sr anomalies in spider diagram, a negative correlation between Sr and Rb, and positive correlations between Sr and Ba and $Eu/Eu^*$ indicate that a fractional crystallization of both plagioclase and K-feldspar played a significant role during magma evolution. The Myeongseongsan Granite is plotted in I-& S-type granites on I, S, A-type granite classification scheme. While the biotite monzogranite is plotted in unfractionated I-& S-type granite, the biotite alkaligranite is plotted in fractionated I-& S-type granite, which indicates that the biotite alkaligranite is a more differentiated product. In order to elucidate the nature of the protoliths of the peraluminous Myeongseongsan magma, we plotted in $Al_2O_3/TiO_2$ vs. $CaO/Na_2O$ and Rb/Sr vs. Rb/Ba diagrams, and they suggest that the Myeongseongsan Granite was derived from clay-poor metagreywackes and meta-psammites or their igneous counterparts. Whole-rock zircon saturation temperature indicates that the Myeongseongsan magma was melted at $740-799^{\circ}C$.

The Origin and Age of the Orbicular Granite Gneiss in Wangjungri, Muju (무주 왕정리 일대 구상 화강편마암의 성인과 형성시기)

  • Oh, Chang Whan;Lee, Byung Choon;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.117-135
    • /
    • 2013
  • Orbicular granite gneisses occur as a xenolith within two-mica leucogranites, together with early Paleoproterozoic metasedimentary xenoliths, in Wangjeong-ri, Muju area. The whole-rock chemistries and SHRIMP zircon Pb/U ages of the leucogranites indicate that they are S-type granitoids formed in the continental tectonic setting at $1875{\pm}75$ Ma. The SHRIMP age of monazites from the orbicular granite gneiss gives $1867{\pm}4$ Ma as a metamorphic age which is similar to the intrusion age of the two-mica leucogranite within the error range. The similar ages between zircons and monazites represent that the orbicular granite gneisses formed by metamorphism during the intrusion of the two-mica leucogranite; the metasedimetary xenoliths which sank within the parent magma of leucogranites were metamorphosed into orbicular granite gneisses by thermal metamorphism ($650-740^{\circ}C$, 4-6.5 kbar) due to the heat supplied from surrounding magma. During the thermal metamorphism, the core of orbicular granite gneiss mainly consisting of cordierite formed, and in some orbicular granitic gneisses, the leucocratic melt formed by melting of quartz and plagioclase in the core, squeezed out from core and crystallized around the core forming outer rim. The hydrothermal fluid at the late stage of magma differentiation penetrated into the orbicular granite gneisses resulting pinitization of cordierite into chlorite and sericite. As Muju orbicula granite gneiss was formed from sedimentary rocks, it is more appropriate to be called Muju orbicula granitic gneiss.

Petrology of Jurassic Granitoids in the Hamyang-Geochang Area, Korea (함양(咸陽)-거창(居昌) 지역(地域), 쥬라기 화강암류(花崗岩類)의 암석학적(岩石學的) 연구(硏究))

  • Lee, Cheol-Lag;Lee, Yoon-Jong;Hayashi, Masao
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.447-461
    • /
    • 1992
  • The Jurassic granitoids in the study area are divided into the "Gneissose granodiorite" and the "Daebo granodiorite" (1 : 250,000 Jeonju Geological map, 1973). The term of Geochang granodiorite was used in this study instead of "Daebo granodiorite". These granitoids were studied in terms of microscopic observation, petrochemistry, and zircon morphology. The granitoids are mostly granodiorite. Two kinds of progressive variation can also be recognized in the modal quartz~alkali feldspar~plagioclase triangular diagram; the Gneissose granodiorite is in accordance with the trondhjemitic (low k) trend, and the Geochang granodiorite with the granodioritic trend (medium k). The granitoids belong to the calc-alkaline series, and are classified into the I-type (magnetite series). Plagioclase ($An_{25.1}{\sim}An_{30.9}$) in the granitoids shows generally an oligoclase composition. Biotite has a wider range in (Si, Al) solution than in (Fe, Mg) solid solution. Hornblende occurs in a few thin sections of the Geochang granodiorite, and is plotted in the tschermakite field. The zircon prism shows a long variation between the {110} dominant type and the {100} dominant type in the Geochang granodiorite, but only the {110}={100} type in the Gneissose granodiorite. However, zircon crystals in the granitoids are mostly crystallized in a low-to-medium temperature magma. In the PPEF (Prism- Pyramid-Elongation-Flatness) diagram, the Gneissose granodiorite shows a closed scissors type, the Geochang granodiorite, a opened scissors type. It indicates that the Geochang granodiorite might originate from the mixed magma with crustal materials or pre-existed residual magma which had formed the Gneissose granodiorite.

  • PDF