• Title/Summary/Keyword: Mafic-ultramafic

Search Result 12, Processing Time 0.029 seconds

The Overview of Layered structures in Mafic - Ultramafic Macheon Intrusion (고철질-초고철질 마천관입암의 층상구조 개관)

  • Song, Yong-Sun;Kim, Dong-Yeon;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.162-179
    • /
    • 2007
  • Macheon Layered Intrusion (MLI) which intruded into Precambrian gneiss complex of the northern Jirisan area, southeastern part of Youngnam (or Sobaeksan) Massif, is a layered mafic-ultramafic complex of Triassic age (ca. 223 Ma). The MLI is divided into Layered Series and Laminated Series. Layered Series is subdivided into Central Zone (Lower Zone) consisting of olivine gabbros and Peripheral Zone (Middle or Upper Zone) consisting of hornblende gabbros based on the type of cumulus texture and the main mafic phase. The Central Zone of Layered Series comprises thinly laminated olivine gabbros and uniform or thickly laminated coarse olivine gabbros which consist of mela-gabbro, troctolite, leuco-troctolite, and anorthositic rocks. Laminated Series is also subdivided into quartz-bearing biotite-pyroxene gabbros and homblende diorite and both have variable amount of interstitial quartz and microcline. Laminated series display moderately to slightly developed igneous lamination which is defined by the planar alignment of lath-shape plagioclases. Chilled margin of quartz-bearing biotite-pyroxene gabbro with surrounding Precambrian gneisses insists shallower intrusion of more felsic cognate magma evolved in the deep a little later. Rocks of Layered Series have orthocumulus to adcumulus olivine, adcumulus to intercumulus plagioclase, and intercumulus to heteradcumulus pyroxene and hornblende. Magmatic modally grading, folding, and cross-lamination are not rarely occurred in thinly layered rocks. These textural characteristics define main mechanisms of the formation of layered and laminated structure in mafic-ultramafic rocks of Macheon Layered Intrusion are gravity settling and in-situ crystallization associated with slumping and density current.

Detrital Mineral Chemistry of Jurassic Sandstone from the Mino Terrane in Southwest Japan

  • Young Ji Joo;Yong Il Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.307-317
    • /
    • 2023
  • We investigate the provenance of detrital garnets in Middle-Upper Jurassic sandstone of the Mino terrane, an accretionary complex in Southwest Japan, based on their chemical composition. The garnet grains in the Mino sandstone are mostly Fe-rich (almandine) and slightly Mg-rich (pyrope) species derived from high-grade metamorphic and intermediate to acidic plutonic rocks. The composition and interpreted origin of the garnets are generally consistent with those of metamorphic and igneous rocks of the Yeongnam Massif on the Korean Peninsula, a possible source region suggested in previous studies. In addition, two single grains of chromian spinel, an accessory mineral found in mafic to ultramafic rocks such as mantle peridotite, were found in one of the Mino sandstone samples. This finding suggests the possible presence of mafic to ultramafic rocks in the source area. The results of this study provide complimentary evidence for establishing a comprehensive tectonic and paleogeographical framework for the Mesozoic East Asian continent.

Petrochemistry of the Peridotites within an Andong Ultramafic Complex and Characteristics of Asbestos Occurrences (안동 초염기성암 복합체 내 페리도타이트의 암석지화학과 석면 산출 특성)

  • Song, Suckhwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.15-39
    • /
    • 2019
  • An ultramafic complex occurs as an isolated lenticular body in the Andong area. The Andong ultramafic complex comprises ultramafic and mafic rocks, but mainly peridotites. The complex extends for several kilometer to ENE direction, adjacent to the Andong fault line. This study is for petrochemistry of the peridotites within the ultramafic complex and characteristics of asbestos occurrences. The peridotites are igneous origin, ranging from lherzolite to wehrlites and are characterized by high Fo olivine ($Fo_{0.85-0.87}$), Mg clinopyroxene ($Mg_{87.5-93.5}$), and tremolitic to tschermakitic hornblende. Geochemically, these rocks show high magnesium number (mainly Mg = 85.3-87.38) and transitional element and low alkali element contents. The peridotites host asbestos, including chrysotile, tremolite and actinolite asbestos, but dominated by amphibole asbestos. The amphibole asbestos are found along small fault face, and cleavage and fracture showing several cm to ten cm in width as slip and oblique fibers, while the chryostiles occur at cleavage and vein showing several mm-cm in width as cross and slip fibers. They are confirmed by PLM, XRD and SEM results. Overall characteristics of peridotites from the Andong ultramafic complex and occurrences of the asbestos are similar to those of worldwide orogenic related Alpine type ultramafic rocks and serpentinized ultramafic bodies in Chungnam, Korea, respectively.

Investigation on Potential Value for Maritime Cultural Heritage, Historical and Petrographic Characteristics of the Seosan Black Submerged Rocks (Geomenyeo) in Korea (서산 검은여의 역사적 및 암석기재적 특징과 해양유산적 잠재가치 검토)

  • Park, Jun Hyoung;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • The Seosan Geomenyeo(black submerged rocks), once located at the Cheonsuman bay of Buseokmyeon in Seosan, Korea, is a reef rock now exposed on the land surface. The Geomenyeo can also be found in the ancient geographic maps around the area. The local geographic names, like Buseok and Buseoksa temple are derived from the Geomenyeo. It is composed of ultramafic rocks complex and intrusive felsic igneous rocks. These rocks show diverse facies with various petrographic characteristics caused by geological processes such as intrusion and alteration. Ultramafic rocks complex can be roughly categorized as coarse grained ultramafic rocks and medium grained mafic rocks. Both cases are composed of pyroxene and amphibole, showing the general rock facies of pyroxenite, diabase and lamprophyre. Felsic igneous rocks includes pinkish medium grained granite, porphyritic amphibole granite and aplite with varied mineral compositions. The Geomenyeo is the only ultramafic rocks complex in the Cheonsuman Bay; moreover, it has a distinctive geological and scenic value, as well as a symbolic property. In order to preserve the Geomenyeo, it is necessary to investigate and promote it as a designated heritage site through academic studies, and compensate for the convenience and protection facilities. Additionally, the Geomenyeo should be evaluated as a maritime heritage site, due to the unique local culture as it succeeds the recognition of forefathers which regarded it as a local scenic site with significance.

Lu-Hf Isotopic Systematics and Its Applications for Geology (Lu-Hf 동위원소시스템의 지질학적 활용)

  • Choi, Sung Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.229-237
    • /
    • 2014
  • The Lu-Hf isotope system, coupled with the advent of multiple collector inductively coupled plasma source mass spectrometry, is now widely utilized as a tracer for geological processes. The paper presents a comprehensive review on the principles of the Lu-Hf isotopes, and its current and potential applications to both geochronology and petrogenesis. Finally, based on the Lu-Hf isotopic data from Korean mafic and ultramafic rocks, its has been discussed evolution of the mantle beneath the Korean Peninsula.

Original Rocks of the Talc Ore Deposits and their Steatitization in the Yesan Area, Choongnam, Korea (충남 예산지구 활석광상의 기원암과 활석화작용)

  • Woo, Young-Kyun;Lee, Dong-Woo
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.548-557
    • /
    • 2001
  • Ultramafic rocks in the Yesan talc ore deposits area are unknown age plutonic rocks which intruded PreCambrian Yoogoo gneiss, and were intruded by Jurassic biotite granite, and Cretaceous acidic and mafic dykes. The ultramafic rocks consist mainly of serpentinite with some amphibolite and talc ore body. The serpentinites are divided 5 rock types (S1${\sim}$S5) on the basis of the developed degree of serpentine phenocrysts and layerings. It seems that the original rocks of the serpentinites were co-magmatic peridotites (dunite and pyroxene peridotite). Main serpentinization from the original rocks was occurred during amphibolite facies regional metamorphism in Choongnam area which Yoogoo gneiss was affected. Main steatitization from the serpentinites was hydrothermal alteration by ascended hydrothermal fluid through crush zones.

  • PDF

Mineralogical and Gechemical Studies of Titaniferous Iron Ores and Ultramafic to Mafic Rocks from the Boreundo Iron Ore Deposits, South Korea (볼음도 자철광상의 초염기성-염기성암과 티타늄자철광석의 광물 및 지구화학적 연구)

  • 김규한
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.1-18
    • /
    • 2000
  • Lens shaped and stratiform titanomagnetite orebodies in the Boreumdo iron mine are closely associated with amphibolite which intruded into Precambrian metasediments. Mineralogical and petrochemical analyses of amphilbolite and titanomagnetite ores were carried out in order to interpret the origin of amphilbolite and the genesis of titanomagnetite ore deposits. Amphibolites belong to orthoamphilbolite interms of Niggli value and mineralogy, and are characterized by the occurrence of relict olivine. The amphilbolites responsible for titanomagnetite mineralization have extremely high content of $TiO_2$, ranging from 2.12 to 4.59 wt.% with the average value of 3.43 wt.%. Amphibole minerals in amphibolites are consist mainly of calcic amphiboles such as hornblende, ferroan pargasitic hornblende and tremolite. Most plagioclases belong to andesine ($An_{30-50}$\ulcorner). The metamorphic temperature and geobarometric pressure which are calculated by the calcic amphibole-plagioclase geothermometer and calcic amphilbole geobarometer are estimated to be 537$^{\circ}C$~579$^{\circ}C$(avg. 555$^{\circ}C$) and 2.9~6.6 kbar (avg. 4.5 kbars), respectively. It shows a typical amphibolite facies. Based on the mineral chemistry and petrochemisty of amphibolites and iron ores which are composed mainly of titanomagnetite and ilmenite in the Boreumdo iron mine, the titaniferous oxide melts could be immiscibly separatd from the titaniferous ultrabasic magma. The genesis of the Boreumdo titanomagnetite ore deposits are analogous to the Soyeonpyeongdo and Yonchon iron ore deposits in terms of their mineralogy, mineral chemistry and geologic setting.

  • PDF

Geochronological and Geotectonic Implications of the Serpentinite Bodies in the Hongseong Area, Central-western Korean Peninsula (한반도 중서부 홍성지역 내에 분포하는 사문암체의 지질연대학 및 지구조적 의미)

  • Kim, Sung Won;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.249-267
    • /
    • 2016
  • The Hongseong area of the central-western Korean Peninsula is considered to be a part of collision zone that is tectonically correlated to the Qinling-Dabie-Sulu belt of China. The area includes the elliptical-shaped serpentinized ultramafic bodies, together with mafic rocks. The studied bodies are in contact with the surrounded Neoproterozoic alkali granites at the Baekdong and Wonnojeon bodies and the Paleoproterozoic Yugu gneiss at the Bibong body. The Baekdong body contains the blocks of the Neoproterozoic alkali granites and the Late Paleozoic metabasites. The Bibong body also includes the Neoproterozoic alkali granite blocks. The Mesozoic intrusive rocks are also recognized at the Baekdong, Wonnojeon and Bibong bodies. On the other hand, the Early Cretaceous volcanic rocks are occurred at the Bibong body. The detrital zircon SHRIMP U-Pb ages of the serpentinites at three bodies range variously from Neoarchean to Middle Paleozoic at the Baekdong body, and from Neoarchean to Early Cretaceous at the Wonnojeon and Bibong bodies. Although serpentinization does not generally produce minerals suitable for direct isotopic dating, the youngest Middle Paleozoic age at the Baekdong body and the Early Cretaceous age at the Wonnojeon and Bibong bodies indicate the possible upper age limit for the (re)serpentinization. Especially, the Early Cretaceous serpentinization ages may be related to the widespread Early Cretaceous igneous activity in the central-southern Korean Peninsula. Age results for the serpentinite bodies and the included blocks of the studied serpentinized ultramafic bodies in the Hongseong area, therefore, provide several possible interpretations for the serpentinization ages of the ultramafic rocks as well as the geotectonic implications of serpentinization, requiring more detailed study including other serpentinized ultramafic bodies in the Hongseong area.

Mineralogical Characteristics of Naturally Occurring Asbestos (NOA) at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 자연발생석면의 광물학적 특성)

  • Jung, Haemin;Shin, Joodo;Kim, Yumi;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.467-477
    • /
    • 2014
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on NOA were mainly limited to ultramafic and mafic rock-hosted asbestos in Korea. But, studies on carbonatehosted asbestos are relatively rare. Therefore, the purposes of this study were to investigate mineralogical characteristics of carbonate-hosted and metapelite-hosted NOA and to examine genesis of NOA occurred in the both rocks. The study area was Daerori, Seosan, Chungnam Province, Korea. The major rock formation consisted of limestone and schist which have been known to contain asbestos. Sampling was performed at outcrop which contained carbonate rock showing acicular asbestos crystals as well as pegmatitic intrusion that contacted with carbonate rock. PLM, XRD, EPMA, and EDS analyses were used to characterize mineral assemblages, mineralogical characteristics, and crystal habits of amphiboles and other minerals. BSEM images were also used to examine the genesis of asbestos minerals. The amphibole group was observed in all of the carbonate rocks, and actinolite and tremolite were identified in all rocks. These mineral habits were mainly micro-acicular crystals or secondary asbestiform minerals on the surface of non-asbestiform minerals appearing split end of columnar crystals produced by weathering. BSEM images showed residual textures of samples. The residual textures of carbonate rocks showed dolomite-tremolite-diopside mineral assemblages that formed during prograde metasomatism stage. Some carbonate rock also showed diopside-tremolite-talc mineral assemblages which were formed during retrograde metasomatism stage, as the residual textures. In result the presence of asbestos actinolite-tremolite in the carbonate rocks were confirmed in the areas where actinolite-tremolite asbestos was influenced by low temperature hydrothermal solution during metasomatism stage. These asbestos minerals showed the acicular asbestiform minerals, but even non-asbestiform minerals, a bundle or columnar shape, could transform to asbestiform minerals as potential NOA by weathering because the end of columnar shape of non-asbestiform minerals appeared as multiple acicular shaped fibers.

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.