• Title/Summary/Keyword: Macroscopic Model

Search Result 282, Processing Time 0.03 seconds

Colloidal Engineering for Nano-Bio Fusion Research (Nano-Bio 융합 연구를 위한 콜로이드 공학)

  • Moon, Jun Hyuk;Yi, Gi-Ra;Lee, Sang-Yup;So, Jae-Hyun;Kim, Young-Seok;Yoon, Yeo-Kyun;Cho, Young-Sang;Yang, Seung-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.647-659
    • /
    • 2008
  • Colloids are a heterogeneous system in which particles of a few nanometers to hundreds micrometers in size are finely dispersed in liquid medium, but show homogeneous properties in macroscopic scale. They have attracted much attention not only as model systems of natural atomic and molecular self-assembled structures but also as novel structural materials of practical applications in a wide range of areas. In particular, recent advances in colloidal science have focused on nano-bio materials and devices which are essential for drug discovery and delivery, diagnostics and biomedical applications. In this review, first we introduce nano-bio colloidal systems and surface modification of colloidal particles which creates various functional groups. Then, various methods of fabrication of colloidal particles using holographic lithography, microfluidics and virus templates are discussed in detail. Finally, various applications of colloids in metal inks, three-dimensional photonic crystals and two-dimensional nanopatterns are also reviewed as representative potential applications.

The Effects of Ethosome and Liposome Formulation Entrapped DL-HGF to Hair Growth Activity in Animal Model (DL-HGF를 주성분으로 한 ethosome 및 liposome 제형화합물이 발모 촉진 활성에 미치는 영향)

  • Kim, Hyun-Woo;Jung, Young-Joon;Lee, Dong-Gye;Han, Sang-Geun;Choung, Eui-Su;Kim, Hee-Taek;Kang, Se-Chan
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • Objectives : To investigate the effects of DL-HGF to hair growth activity in mouse, various kinds of ethosome and liposome formulations entrapped DL-HGF were produced and this study was carried out. Methods : The B16/BL6 mice were classified into five groups: vehicle control (Con) group, Et-1-applied group, Et-2-applied group, LP-1-applied group, LP-2-applied group. Active hair growth (anagen) was induced in the back skin by application of a waxosin mixture with subsequent depilation and the activity of hair growth was measured by macroscopic observation and histology. Results : In vehicle control group, there was no hair growth activity during experiment period. In Et-1-applied group, the rate of hair growth was about 100%, LP-1-applied group and Et-2-applied group showed 70-80% and 40-50% of hair growth rates, respectively. The rate of hair growth of LP-2-applied group was lower than other applied groups (20-30%). In H/E staining, Numerous hair folicles and hair shafts were observed in Et-1-applied group and other groups showed lower level of hair folicles and hair shafts formation than Et-1-applied group, Conclusion : Et-1 formulation showed highest hair growth activity than other ethosome and liposome formulations entrapped DL-HGF.

  • PDF

Numerical Discussion on Natural Convection in Soils (지반내 자연대류에 대한 수치해석적 논의)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.35-47
    • /
    • 2017
  • Thermal behavior of soils is mainly focused on thermal conduction, and the study of natural convection is very limited. Increase of soil temperature causes natural convection due to buoyancy from density change of pore water. The limitations of the analysis using fluid dynamics for natural convection in the porous media is discussed and a new numerical analysis is presented for natural convection in porous media using THM governing equations fully coupled in the macroscopic view. Numerical experiments for thermal probe show increase in the uncertainty of thermal conductivity estimated without considering natural convection, and suggest appropriate experimental procedures to minimize errors between analytical model and numerical results. Burial of submarine power cable should not exceed the temperature changes of $2^{\circ}C$ at the depth of 0.2 m under the seabed, but numerical analysis for high permeable ground exceeds this criterion. Temperature and THM properties of the seafloor are important design factors for the burial of power cable, and in this case effects of natural convection should be considered. Especially, in the presence of heat sources in soils with high permeability, natural convection due to the variation of density of pore water should be considered as an important heat transfer mechanism.

Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) could accelerate burn wound healing in hamster skin

  • Heo, Si-Hyun;Han, Kyu-Boem;Lee, Young-Jun;Kim, Ji-Hyun;Yoon, Kwang-Ho;Han, Man-Deuk;Shin, Kil-Sang;Kim, Wan-Jong
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.207-214
    • /
    • 2012
  • Burns are one of the most devastating forms of trauma and wound healing is a complex and multicellular process, which is executed and regulated by signaling networks involving numerous growth factors, cytokines, and chemokines. Recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) was specifically produced from rice cell culture through use of a recombinant technique in our laboratory. The effect of rhGM-CSF on promotion of deep second-degree burn wound healing on the back skin of a hamster model was evaluated through a randomized and double-blind trial. As macroscopic results, hamster skins of the experimental groups showed earlier recovery by new epidermis than the control groups. Immunohistochemical reactions of proliferating cell nuclear antigen and transforming growth factor-b1, which are indicators of cell proliferation, were more active in the experimental group, compared with the control group. On electron microscopy, basal cells in the epidermis of the experimental group showed oval nuclei, prominent nucleoli, numerous mitochondria and abundant free ribosomes. In addition, fibroblasts contained well-developed rough endoplasmic reticulum with dilated cisternae. Bundles of collagen fibrils filled the extracellular spaces. Particularly, ultrastructural features indicating active metabolism for regeneration of injured skin at 15 days after burn injury, including abundant euchromatin, plentiful free ribosomes, and numerous mitochondria, were observed. These findings suggest that use of rhGM-CSF could result in accelerated deep second-degree burn wound healing in animal models.

A Evaluation Study on Communication of Urban Regeneration for China (중국 도시재생의 의사소통에 관한 평가 연구)

  • Wu, Qian;Hong, Kwan-Seon;He, Shun-Ping
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.489-502
    • /
    • 2018
  • The dialogue and interaction among the roles in the urban regeneration process and expanding the social influence of urban regeneration in China are the most important step facing the urban regeneration in China today. Most of the urban regeneration theories in China are manifested only in the macroscopic policy, and the number of researches to resolve urban regeneration problem is far from enough, which can be seen as a realistic problem that confronted by China today as the urban regeneration theory has gone through practice. we analyzed the communication factors that appeared in the case of the communication type urban regeneration. Since 2000. The results of this study show that communicative urban regeneration is suitable for the current state of China. This model can solve the problem of urban regeneration in China with a unique perspective.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures

  • Pan, Haiyang;Jiang, Ning;Gao, Zhiyou;Liang, Xiao;Yin, Dawei
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • With the exploitation of natural resources in China, underground resource extraction and underground space development, as well as other engineering activities are increasing, resulting in the creation of many defective rocks. In this paper, uniaxial compression tests were performed on rocks with double holes and fractures at different angles using particle flow code (PFC2D) numerical simulations and laboratory experiments. The failure behavior and mechanical properties of rock samples with holes and fractures at different angles were analyzed. The failure modes of rock with defects at different angles were identified. The fracture propagation and stress evolution characteristics of rock with fractures at different angles were determined. The results reveal that compared to intact rocks, the peak stress, elastic modulus, peak strain, initiation stress, and damage stress of fractured rocks with different fracture angles around holes are lower. As the fracture angle increases, the gap in mechanical properties between the defective rock and the intact rock gradually decreased. In the force chain diagram, the compressive stress concentration range of the combined defect of cracks and holes starts to decrease, and the model is gradually destroyed as the tensile stress range gradually increases. When the peak stress is reached, the acoustic emission energy is highest and the rock undergoes brittle damage. Through a comparative study using laboratory tests, the results of laboratory real rocks and numerical simulation experiments were verified and the macroscopic failure characteristics of the real and simulated rocks were determined to be similar. This study can help us correctly understand the mechanical properties of rocks with defects and provide theoretical guidance for practical rock engineering.

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

Designing Modularization Method for Digital Twin: Focusing on the Noodle Manufacturing Process (디지털 트윈의 모듈화 기법 설계: 면 제조 공정을 중심으로)

  • Chan Woo Kwon;Seok Hyun Song
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2024
  • There has been a recent surge of interest in the Digital Twin technology. The Digital Twin is technique for optimizing objects by simulating physical phenomena or objects through computer-based simulations. Currently, single Digital Twin is being developed to optimize processes limited to specific fields, but there is a limitation in that the independent Digital Twins cannot analyze the vast and complex processes of the real world. To overcome this, the concept of federated Digital Twin has been introduced. To date, the federated Digital Twin research has primarily focused on how to optimize macroscopic objects such as cities. However, by leveraging the interconnected nature of twins, existing implementations of the single Digital Twins can be modularized. In this study, we define the concepts and interrelationships of the single Digital Twin and the federated Digital Twin from a functional perspective related to process optimization and design a modularization technique for the single Digital Twin using the federated Digital Twin. Furthermore, this study aims to discuss the proposed methodology's efficacy by designing a model applying modularization to a real-world fabric manufacturing case.

Analysis of Transaction Networks among Korean IT Corporations in Nine Metropolitan Regions: Assessing Connection Strengths and Developing a Node Centrality Composite Indicator (국내 IT 기업 대상 9개 광역권 지역의 거래 네트워크 분석: 연결강도 분석 및 노드 중심성 복합지표 개발)

  • Geon Jae Yu;Hyun Sang Lee;Choong Kwon Lee
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.108-121
    • /
    • 2024
  • In the IT industry, the complexity and volatility of corporate networks are gradually evolving, and concurrently, the significance of corporate networks is increasing. Previous research has employed network analysis to scrutinize inter-corporate trade relationships for strategic and policy making. However, previous studies focused on the overall network structure from a macroscopic perspective, presenting limitations in applicability at the individual IT corporation level. This study develops a novel research model incorporating sector and region-level network analysis based on connection strength, along with the derivation of a composite node centrality indicator. Using this methodology, we analyzed corporate networks across nine metropolitan areas using IT corporate transaction data. The results means that cities with a manufacturing base, such as Incheon, Busan, and Daegu, have recently established cooperative networks with IT companies. We also found that in the IT industry in Gwangju and Daejeon, certain companies dominate the transaction network.