• Title/Summary/Keyword: Macroscopic Characteristics

Search Result 252, Processing Time 0.019 seconds

Effect of fuel injection timing and pressure on the combustion and spray behavior characteristics of diesel fuel for naval vessel (연료분사시기와 압력이 함정용 디젤연료의 분무 및 연소특성에 미치는 영향)

  • Lee, Hyung-min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.911-917
    • /
    • 2015
  • The objective of this work focuses on the analysis of injection rate and macroscopic spray behavior characteristics with injection pressures as well as combustion and exhaust emission characteristics with injection timing and injection pressure by using a common rail single-cylinder diesel engine. The injection rate was measured by applying the Bosch method, and macroscopic spray behavior characteristics were analyzed with a constant-volume vessel and a high-speed camera. In addition, combustion and emission characteristics were analyzed in a common-rail single-cylinder diesel engine with precise control of fuel injection timing and pressure. For injection pressures of 30MPa and 50MPa, the injection rate was higher at 50 MPa, and the spray development (penetration) was also higher in the same elapsed time. The peak in-cylinder pressure and rate of heat release showed a tendency to decline as injection timing was delayed, and the peak in-cylinder pressure and rate of heat release were slightly higher for higher injection pressures. Higher injection pressures also reduced the mean effective pressure, while the indicated mean effective pressure and torque increased as injection timing was delayed to TDC. Nitrogen oxides had a peak level at injection timings of $BTDC20^{\circ}$(30MPa) and $BTDC15^{\circ}$(50MPa); carbon monoxide emissions were reduced by delaying injection timing from $BTDC30^{\circ}$.

A Study on Identification Keys of Araliae Continentalis Radix and its Adulterants : Focused on External·Internal Morphology and Pattern Analysis (독활(獨活)과 그 위품의 감별기준 연구 : 외·내부형태 및 이화학패턴을 중심으로)

  • Yoon, Jee-Hyun;Ju, Young-Sung
    • The Korea Journal of Herbology
    • /
    • v.33 no.2
    • /
    • pp.29-43
    • /
    • 2018
  • Objectives : Araliae Continentalis Radix(AC) is a medicinal herb belonging to the drug efficacy group treating musculoskeletal disorders(MSD) with anti-inflammatory, analgesic and antipyretic action. However, due to morphologic and onomastic similarity, adulterants(Angelicae Pubescentis Radix: AP, Gypsophilae Oldhamianae Radix: GO, Levistici Officinalis Radix: LO) have been included or replaced the standard. Methods : Multilateral methods were carried out on the identification of AC and its adulterants. Macroscopic and microscopic characteristics were observed by using stereoscope and microscope. For the comparison of chromatogram pattern, standard compounds were analyzed simultaneously using high performance liquid chromatography. Results : 1. The macroscopic identification of original plants was determined by the phyllotaxis type, the inflorescence type, the leaf margin and the color of flowers. The macroscopic identification of herbal materials was examined by oil spots, the cambium, heteromorphic vascular bundles, and the pholem. 2. For the microscopic identification, the fact whether its xylem ray is proliferated or not was first determined. Then medicinal herbs were secondly divided by cellular inclusions, fiber bundles, the distribution of secretary canals and the shape of cambium. 3. AC and its adulterants showed different chromatographic fingerprints. AC was containing continentalic acid and kaurenoic acid. AP was containing osthole and columbianadin. LO was containing osthole and falcarindiol. None of the compounds were found in GO. Conclusions : This recent identification keys of might be helpful to discriminate the pharmacopoeia standard and its adulterants for the right usage in clinics.

A Study on Characteristics of Gas/Liquid Coaxial Sprays Under Varying Flow Conditions (분사조건에 따른 기체/액체 동축형 인젝터의 분무특성에 관한 연구)

  • Jeong, W.H.;Kim, D.;Im, J.H.;Yun, Y.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • Characteristics of sprays injected by gas/liquid coaxial atomizers operated at atmospheric pressure are studied using shadowgraph, mechanical patternator and PDPA. The gas-to- liquid momentum flux ratio(M) and the liquid Reynolds number(Re) are selected as key parameters in characteristics of gas/liquid coaxial sprays from the dimensional analysis. The properties of shear coaxial sprays are compared with those of swirl coaxial sprays through the macroscopic and microscopic analysis. Macroscopic similarities between shear and swirl coaxial sprays are revealed under flow conditions of high momentum flux ratio. Also, empirical correlations between the mean drop diameters(D32) and operating conditions of coaxial sprays are proposed in this paper.

Spray Characteristics in CI Engines Fuelled with Vegetable Oils and Its Derivatives

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.15-26
    • /
    • 2011
  • In this article, spray characteristics in CI engines fuelled with vegetable oils and its derivatives will be reviewed. Of edible vegetable oils, soybean oil and rapeseed oil were mainly investigated. Of inedible vegetable oils, jatropha oil and used frying oil were main concern on the research on the spray characteristics in CI engine. Spray angle and spray penetration were mainly examined among the macroscopic spray characteristics and Sauter mean diameter was only investigated among the microscopic spray characteristics. There exist six different definitions of spray angle which should be examined. Neat vegetable oil and biodiesel fuels show smaller spray angle than diesel fuel. Biodiesel fuel and vegetable oils and its blend have a longer spray penetration than diesel fuel. However, biodiesel blends with diesel shows the similar spray penetration with diesel fuel. SMDs in the biodiesel spray, vegetable oils and its blends spray are higher than that in the diesel spray.

Atomization Characteristics and Prediction Accuracy of LISA-DDB Model for Gasoline Direct Injection Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1177-1186
    • /
    • 2004
  • In this paper, the spray atomization characteristics of a gasoline direct-injection injector were investigated experimentally and numerically. To visualize the developing spray process, a laser sheet method with a Nd :YAG laser was utilized. The microscopic atomization characteristics such as the droplet size and velocity distribution were also obtained by using a phase Doppler particle analyzer system at the 5 ㎫ of injection pressure. With the experiments, the calculations of spray atomization were conducted by using the KIVA code with the LISA-DDB breakup model. Based on the agreement with the experimental results, the prediction accuracy of LISA-DDB breakup model was investigated in terms of the spray shapes, spray tip penetration, SMD distribution, and axial mean velocity. The results of this study provides the macroscopic and microscopic characteristics of the spray atomization, and prediction accuracy of the LISA-DDB model.

A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect

  • Damanpack, A.R.;Bodaghi, M.;Liao, W.H.;Aghdam, M.M.;Shakeri, M.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.641-665
    • /
    • 2015
  • In this paper, a simple and efficient phenomenological macroscopic one-dimensional model is proposed which is able to simulate main features of shape memory alloys (SMAs) particularly ferro-elasticity effect. The constitutive model is developed within the framework of thermodynamics of irreversible processes to simulate the one-dimensional behavior of SMAs under uniaxial simple tension-compression as well as pure torsion+/- loadings. Various functions including linear, cosine and exponential functions are introduced in a unified framework for the martensite transformation kinetics and an analytical description of constitutive equations is presented. The presented model can be used to reproduce primary aspects of SMAs including transformation/orientation of martensite phase, shape memory effect, pseudo-elasticity and in particular ferro-elasticity. Experimental results available in the open literature for uniaxial tension, torsion and bending tests are simulated to validate the present SMA model in capturing the main mechanical characteristics. Due to simplicity and accuracy, it is expected the present SMA model will be instrumental toward an accurate analysis of SMA components in various engineering structures particularly when the ferro-elasticity is obvious.

Entropy and its Relation with the Property of Molecule, Phase and Component (엔트로피와 분자 특성, 상 및 성분의 관계)

  • Jaeeon Chang
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.116-122
    • /
    • 2023
  • We study the relationship of entropy with the properties of molecules and also with the macroscopic specifications of the system, i.e., component and phase. Understanding different viewpoints of classical mechanics and quantum mechanics for the indistinguishability of molecules belonging to the same component, we discuss a few thermodynamic systems in which the properties of molecules are to be consistent with the component as a macroscopic term of classifying the molecules. With a clear definition of thermodynamic microstate, the drawback of the Boltzmann statistics caused by the distinguishability of molecules is avoided, and the Gibbs paradox of entropy consequently disappears. Corresponding to the characteristics of fluid and solid phases, we investigated the effects of the indistinguishability and the symmetry number of molecules and the number of microstates realized in time on the partition function and the entropy. In particular, we show that crystalline solid can be regarded as a system which does not satisfy the ergodic hypothesis.

Damage evolution of red-bed soft rock: Progressive change from meso-texture to macro-deformation

  • Guangjun Cui;Cuiying Zhou;Zhen Liu;Lihai Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.121-130
    • /
    • 2024
  • Many foundation projects are built on red-bed soft rocks, and the damage evolution of this kind of rocks affects the safety of these projects. At present, there is insufficient research on the damage evolution of red-bed soft rocks, especially the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation. Therefore, based on the dual-porosity characteristics of pores and fissures in soft rock, we adopted a cellular automata model to simulate the propagation of these voids in soft rocks under an external load. Further, we established a macro-mesoscopic damage model of red-bed soft rocks, and its reliability was verified by tests. The results indicate that the relationship between the number and voids size conformed to a quartic polynomial, whereas the relationship between the damage variable and damage porosity conformed to a logistic curve. The damage porosity was affected by dual-porosity parameters such as the fractal dimension of pores and fissures. We verified the reliability of the model by comparing the test results with an established damage model. Our research results described the progressive process from mesoscopic texture change to macroscopic elastoplastic deformation and provided a theoretical basis for the damage evolution of these rocks.

A Study on Microstructural Characteristics of SUS416 Steel by Controlling Heat Treatment Process (SUS416강의 열처리제어를 통한 미세구조특성에 관한 연구)

  • 김홍건;최창용;김진수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.336-340
    • /
    • 2001
  • Theoretical efforts were taken to investigate an optimum heat treatment process in martensitic stainlesssteel. The approach is based on the combination of the interpolation and extrapolation method of a standard heat treatment technology with the principle of quenching and tempering temperature difference. The relationship of macroscopic structure and fracture toughness and ductility as well as the Hardness and strength has been focused to induce a simple rule to apply with feasibility. As a result it was found that the grain size influences to the fracture toughness and ductility significantly.

  • PDF

A Study on the Injection Characteristics of Biodiesel Fuels Injected through Common-rail Injection System (커먼레일식 분사시스템에서 바이오디젤연료의 분사특성에 관한 연구)

  • Seo, Young-Taek;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.97-104
    • /
    • 2007
  • The object of this work is to analyze the macroscopic spray performance and atomization characteristics between diesel and biodiesel fuels. In this study, the effects of mixture ratios of biodiesel fuel on the spray tip penetration, fuel injection rate, spray cone angle, and the atomization characteristics such as droplet size, droplets distribution, and spray arrival time according to the axial distance were investigated at various injection parameters. It is revealed that the injection rate is more affected by injection pressure than mixture ratio. And, the spray development process is closely matched between diesel and biodiesel fuels. However, the droplet atomization characteristics of biodiesel shows deteriorated results as the mixture ratio of biodiesel increased because of the high viscosity and density.