• Title/Summary/Keyword: Macrophages

Search Result 2,556, Processing Time 0.035 seconds

Suppressive Effect of Curcuma Zedoaria Roscoe on Pulmonary Metastasis of B16 Melanoma Cells

  • Hwang Jae-Cheol;Kim Mi-Rang;Jung Young-Jae;Lee Young-Ja;Jung Wun-Suk;Seo Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.1-10
    • /
    • 2005
  • Objective: We examined the antimetastatic effect of Curcuma zedoaria Roscoe (CZ) on pulmonary metastasis of B 16 cells. Methods: For 6 weeks, Zedoariae Rhizoma made from dried CZ were dissolved in distilled water and administered to mice 2 weeks before they were injected with B]6 melanoma cells. Mice were given CZ at doses of 250 and 500 mg/kg, and were compared for lung weight, survival days, and NO production. Results: Intake of CZ throughout the experiment extended the average survival time. Intake after B16 cell injection slightly prolonged survival time, but intake before B]6 cell injection did not influence life span. We examined the effect of CZ on macrophage function by measuring NO production. After the macrophages were given CZ for 6 weeks, the amount of NO generated by the macrophages stimulated with LPS in culture medium increased. NO generated by the macrophages also served as a cytotoxic factor against B16 melanoma cells. B16 melanoma-conditioned medium reduced NO production by macrophages. However, CZ treatment reversed the reduction in NO production by the conditioned medium significantly. Conclusion : These findings may suggest that macrophage function-modulating activity by CZ appears to underlie its antimetastatic activity, which leads to a decrease in the number of lung metastatic surface nodules and the extension of life span.

  • PDF

Antitumor Activity of the Korean Mistletoe Lectin is Attributed to Activation of Macrophages and NK Cells

  • Yoon, Tae-Joon;Yoo, Yung-Choon;Kang, Tae-Bong;Song, Seong-Kyu;Lee, Kyung-Bok;Her, Erk;Song, Kyung-Sik;Kim, Jong-Bae
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.861-867
    • /
    • 2003
  • Inhibitory effect of the lectins (KML-C) isolated from Korean mistletoe (KM; Viscum album coloratum) on tumor metastases produced by murine tumor cells (B16-BL6 melanoma, colon 26M3.1 carcinoma and L5178Y-ML25 lymphoma cells) was investigated in syngeneic mice. An intravenous (i.v.) administration of KML-C (20-50 ng/mouse) 2 days before tumor inoculation significantly inhibited lung metastases of both B16-BL6 and colon 26-M3.1 cells. The prophylactic effect of 50 ng/mouse of KML-C on lung metastasis was almost the same with that of 100 $\mu$ g/mouse of KM. Treatment with KML-C 1 day after tumor inoculation induced a significant inhibition of not only the experimental lung metastasis induced by B16-BL6 and colon 26M3.1 cells but also the liver and spleen metastasis of L5178Y-ML25 cells. Furthermore, multiple administration of KML-C given at 3 day-intervals after tumor inoculation led to a significant reduction of lung metastasis and suppression of the growth of B16-BL6 melanoma cells in a spontaneous metastasis model. In an assay for natural killer (NK) cell activity. i.v. administration of KML-C (50 ng/mouse) significantly augmented NK cytotoxicity against Yac-1 tumor cells 2 days after KML-C treatment. In addition, treatment with KML-C (50 ng/mouse) induced tumoricidal activity of peritoneal macrophages against B16-BL6 and 3LL cells. These results suggest that KML-C has an immunomodulating activity to enhance the host defense system against tumors, and that its prophylactic and therapeutic effect on tumor metastasis is associated with the activation of NK cells and macrophages.

Mycobacterial Heparin-binding Hemagglutinin Antigen Activates Inflammatory Responses through PI3-K/Akt, NF-${\kappa}B$, and MAPK Pathways

  • Kim, Ki-Hye;Yang, Chul-Su;Shin, A-Rum;Jeon, So-Ra;Park, Jeong-Kyu;Kim, Hwa-Jung;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • v.11 no.2
    • /
    • pp.123-133
    • /
    • 2011
  • Background: Mycobacterium tuberculosis (Mtb) heparin binding hemagglutinin (HBHA) is an Ag known to evoke effective host immune responses during tuberculosis infection. However, the molecular basis of the host immune response to HBHA has not been fully characterized. In this study, we examined the molecular mechanisms by which HBHA can induce the expression of proinflammatory cytokines in macrophages. Methods: HBHA-induced mRNA and protein levels of proinflammatory cytokines were determined in bone marrow-derived macrophages (BMDMs) using RT-PCR and ELISA analysis. The roles of intracellular signaling pathways for NF-${\kappa}B$, PI3-K/Akt, and MAPKs were investigated in macrophage proinflammatory responses after stimulation with HBHA. Results: HBHA robustly activated the expression of mRNA and protein of both TNF-${\alpha}$ and IL-6, and induced phosphorylation of NF-${\kappa}B$, Akt, and MAPKs in BMDMs. Both TNF-${\alpha}$ and IL-6 production by HBHA was regulated by the NF-${\kappa}B$, PI3-K, and MAPK pathways. Furthermore, PI3-K activity was required for the HBHA-induced activation of ERK1/2 and p38 MAPK, but not JNK, pathways. Conclusion: These data suggest that mycobacterial HBHA significantly induces proinflammatory responses through crosstalk between the PI3-K and MAPK pathways in macrophages.

Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein

  • Kim, Hyun-Joo;Cha, Gil Sun;Kim, Hyung-Joon;Kwon, Eun-Young;Lee, Ju-Youn;Choi, Jeomil;Joo, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the ability of Porphyromonas gingivalis (P. gingivalis) to induce oxidation of high-density lipoprotein (HDL) and to determine whether the oxidized HDL induced by P. gingivalis exhibited altered antiatherogenic function or became proatherogenic. Methods: P. gingivalis and THP-1 monocytes were cultured, and the extent of HDL oxidation induced by P. gingivalis was evaluated by a thiobarbituric acid-reactive substances (TBARS) assay. To evaluate the altered antiatherogenic and proatherogenic properties of P. gingivalistreated HDL, lipid oxidation was quantified by the TBARS assay, and tumor necrosis factor alpha (TNF-${\alpha}$) levels and the gelatinolytic activity of matrix metalloproteinase (MMP)-9 were also measured. After incubating macrophages with HDL and P. gingivalis, Oil Red O staining was performed to examine foam cells. Results: P. gingivalis induced HDL oxidation. The HDL treated by P. gingivalis did not reduce lipid oxidation and may have enhanced the formation of MMP-9 and TNF-${\alpha}$. P. gingivalistreated macrophages exhibited more lipid aggregates than untreated macrophages. Conclusions: P. gingivalis induced HDL oxidation, impairing the atheroprotective function of HDL and making it proatherogenic by eliciting a proinflammatory response through its interaction with monocytes/macrophages.

THE ROLE OF MAPK AND PKC-${\delta}$ IN PHOSPHATIDIC ACID-MEDIATED INTERCELLULAR ADHESION MOLECULE-1 EXPRESSION (Phosphatidic acid에 의한 intercellular adhesion molecule-1 발현 조절에 관여한 MAPK와 PKC-${\delta}$의 역할)

  • Cho, Woo-Sung;Yoon, Hong-Sik;Chin, Byung-Rho;Baek, Suk-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.445-454
    • /
    • 2007
  • Background: Phosphatidic acid(PA), an important second messenger, is involved in inflammation. Notably, cell-cell interactions via adhesion molecules playa central role in inflammation. This thesis show that PA induces expression of intercellular adhesion molecule-1(ICAM-1) on macrophages and describe the signaling pathways. Materials and methods: Macrophages were cultured in the presence of 10% FBS and assayed cell to cell adhesion using HUVEC. For the gene and protein analysis, RT-PCR, Western blot and flow cytometry were performed. In addition, overexpressed cell lines for dominant negative PKC-${\delta}$ mutant established and tested their effect on the promoter activity and expression of ICAM-1 protein by PA. Results: PA-activated macrophages significantly increased adhering to human umbilical vein endothelial cell and this adhesion was mediated by ICAM-1. Pretreatment with rottlerin(PKC-${\delta}$ inhibitor) or expression of a dominant negative PKC-${\delta}$ mutant, but not Go6976(classical PKC-${\alpha}$ inhibitor) and myristoylated PKC-${\xi}$ inhibitor, attenuated PA-induced ICAM-1 expression. The p38 mitogen-activated protein kinase(MAPK) inhibitor blocked PA-induced ICAM-1 expression in contrast, ERK upstream inhibitor didn't block ICAM-1. Conclusion: These data suggest that PA-induced ICAM-1 expression and cell-cell adhesion in macrophages requires PKC-${\delta}$ activation and that PKC-${\delta}$ activation is triggers to sequential activation of p38 MAPK.

Nuclear factor kappa-B- and activator protein-1-mediated immunostimulatory activity of compound K in monocytes and macrophages

  • Yang, Woo Seok;Yi, Young-Su;Kim, Donghyun;Kim, Min Ho;Park, Jae Gwang;Kim, Eunji;Lee, Sang Yeol;Yoon, Keejung;Kim, Jong-Hoon;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.298-306
    • /
    • 2017
  • Background: Compound K (CK) is a bioactive derivative of ginsenoside Rb1 in Panax ginseng (Korean ginseng). Its biological and pharmacological activities have been studied in various disease conditions, although its immunomodulatory role in innate immunity mediated by monocytes/macrophages has been poorly understood. In this study, we aimed to elucidate the regulatory role of CK on cellular events mediated by monocytes and macrophages in innate immune responses. Methods: The immunomodulatory role of CK was explored by various immunoassays including cell-cell adhesion, fibronectin adhesion, cell migration, phagocytic uptake, costimulatory molecules, reactive oxygen species production, luciferase activity, and by the measurement of mRNA levels of proinflammatory genes. Results: Compound K induced cell cluster formation through cell-cell adhesion, cell migration, and phagocytic activity, but it suppressed cell-tissue interactions in U937 and RAW264.7 cells. Compound K also upregulated the surface expression of the cell adhesion molecule cluster of differentiation (CD) 43 (CD43) and costimulatory molecules CD69, CD80, and CD86, but it downregulated the expression of monocyte differentiation marker CD82 in RAW264.7 cells. Moreover, CK induced the release of reactive oxygen species and induced messenger RNA expression of proinflammatory genes, inducible nitric oxide synthase, and tumor necrosis factor-alpha by enhancing the nuclear translocation and transcriptional activities of nuclear factor kappa-B and activator protein-1. Conclusion: Our results suggest that CK has an immunomodulatory role in innate immune responses through regulating various cellular events mediated by monocytes and macrophages.

Effects of Angelicae Gigantis Radix pharmacopuncture on Nitric Oxide and Prostaglandin E2 Production in Macrophage (당귀약침액이 대식세포에서 산화질소(NO) 및 프로스타글란딘 (Prostaglandin) 생성에 미치는 영향)

  • Choi, You-Jin;Roh, Jeong-Du
    • Journal of Pharmacopuncture
    • /
    • v.14 no.3
    • /
    • pp.81-90
    • /
    • 2011
  • Objectives : Angelicae Gigantis Radix has been known traditional medicine with antimicrobial activities and it has been widely used for treatment of blood and inflammatory diseases. In the present study, some studies examined anti-inflammation effects of Angelicae Gigantis Radix but they usually were performed by ethanol extracted Angelicae Gigantis Radix pharmacopuncture. So We investigated the inhibitory effects of Angelicae Gigantis Radix pharmacopuncture by hot water and ethanol extract on Nitric oxide(NO) and Prostaglandin $E_2$($PGE_2$) production in lipopolysaccharide(LPS) induced macrophage cell. Methods : Angelicae Gigantis Radix was extracted by ethanol and hot water. Cell viability was determined by MTT assay. To evaluate anti-inflammation effects of Angelicae Gigantis Radix pharmacopuncture, we examined NO and $PGE_2$ production in LPS induced macrophages. The concentrations of NO and $PGE_2$ were measured by Griess assay and Enzyme Immuno-Assay. Results : 1) The MTT assay demonstrated that cytotoxic effect of Angelicae Gigantis Radix pharmacopuncture by hot water extract and ethanol extract in RAW 264.7 macrophage cells were not appeared. 2) Angelicae Gigantis Radix pharmacopuncture by ethanol extract and hot water extract inhibited NO production in LPS induced macrophages significantly. 3) Angelicae Gigantis Radix pharmacopuncture by ethanol extract tended to inhibiting $PGE_2$ production in LPS induced macrophages. And Angelicae Gigantis Radix pharmacopuncture by hot water extract inhibited LPS induced production of $PGE_2$ in RAW 264.7 macrophage cells significantly. Conclusions : This study suggests that Angelicae Gigantis Radix pharmacopuncture may have an anti-inflammatory property through the inhibition of NO and $PGE_2$ production in LPS induced macrophages. It may have a therapeutic potential for the treatment of various inflammatory diseases.

Cordycepin Suppresses Expression of Diabetes Regulating Genes by Inhibition of Lipopolysaccharide-induced Inflammation in Macrophages

  • Shin, Seul-Mee;Lee, Sung-Won;Kwon, Jeong-Hak;Moon, Sun-Hee;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.98-105
    • /
    • 2009
  • Background: It has been recently noticed that type 2 diabetes (T2D), one of the most common metabolic diseases, causes a chronic low-grade inflammation and activation of the innate immune system that are closely involved in the pathogenesis of T2D. Cordyceps militaris, a traditional medicinal mushroom, produces a component compound, cordycepin (3'-deoxyadenosine). Cordycepin has been known to have many pharmacological activities including immunological stimulating, anti-cancer, and anti-infection activities. The molecular mechanisms of cordycepin in T2D are not clear. In the present study, we tested the role of cordycepin on the anti-diabetic effect and anti-inflammatory cascades in LPS-stimulated RAW 264.7 cells. Methods: We confirmed the levels of diabetes regulating genes mRNA and protein of cytokines through RT-PCR and western blot analysis and followed by FACS analysis for the surface molecules. Results: Cordycepin inhibited the production of NO and pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ in LPS-activated macrophages via suppressing protein expression of pro-inflammatory mediators. T2D regulating genes such as $11{\beta}$-HSD1 and PPAR${\gamma}$ were decreased as well as expression of co-stimulatory molecules such as ICAM-1 and B7-1/-2 were also decreased with the increment of its concentration. In accordance with suppressed pro-inflammatory cytokine production lead to inhibition of diabetic regulating genes in activated macrophages. Cordycepin suppressed NF-${\kappa}B$ activation in LPS-activated macrophages. Conclusion: Based on these observations, cordycepin suppressed T2D regulating genes through the inactivation of NF-${\kappa}B$ dependent inflammatory responses and suggesting that cordycepin will provide potential use as an immunomodulatory agent for treating immunological diseases.

Hormonal Changes in Cultured Medium on In Vitro Culture of Bovine Splenic Macrophages (소 비장 유래 Macrophage의 체외배양에 의한 배양액내 호르몬 변화)

  • Choi, Sun-Ho;Cho, Sang-Rae;Han, Man-Hye;Kim, Hyun-Jong;Yeon, Seong-Heum;Son, Dong-Soo;Kim, Young-Keun
    • Development and Reproduction
    • /
    • v.8 no.2
    • /
    • pp.113-117
    • /
    • 2004
  • This study was performed to investigate the hormonal changes in cultured medium during in vitro culture of bovine splenic macrophages. Both pregnant and non-pregnant slaughterhouse spleen were obtained and the macrophages were separated and cultured for 24~120 hrs at 39$^{\circ}C$. Progesterone productions of pregnant group were higher than non-pregnant group for 24~96hrs and significantly higher for 120 hrs. The production of estradiol was higher in 24 hrs in pregnant group and no differences post 24 hrs. Insulin-like growth factor- I(IGF-I) production of pregnant was higher than non-pregnant group at all the culture time point. Inconclusion, splenic macrophages were able to produce peptides by in vitro culture and have important role for the successful pregnancy in bovine.

  • PDF

Tetrachloroauric Acid Depresses the Activation Processes of Phagocytic Cells

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.377-384
    • /
    • 1998
  • Gold compounds depress phagocytic cell responses, including chemotaxis, and respiratory burst. However, the effects of gold compounds on the function of phagocytic cells are variable according to the preparation of medicine. In this study, effect of tetrachloroauric acid on activated neutrophil responses, including respiratory burst, lysosomal enzyme release and change of intracellular $Ca^{2+}$ level and on the synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by macrophages was studied. This study further examines how gold compounds affect the activation processes. The respiratory burst stimulated by complement C5a, degraded IgG and PMA in neutrophils was inhibited by tetrachloroauric acid. In contrast to C5a and degraded IgG, PMA-stimulated superoxide production was weakly inhibited by tetrachloroauric acid. Staurosporine, genistein, EGTA and verapamil inhibited superoxide and $H_2O_2$ production caused by C5a and degraded IgG. PMA-stimulated superoxide production was inhibited by staurosporine but was not affected by genistein. Tetrachloroauric acid, genistein, EGTA and verapamil inhibited the release of acid phosphatase and myeloperoxidase, while the effect of staurosporine was not detected. The synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by $interleukin-1{\beta}$ in macrophages was inhibited by tetrachloroauric acid. Preincubation with tetrachloroauric acid, genistein, EGTA and verapamil, the elevation of [$Ca^{2+}_i$] evoked by C5a was inhibited. Store-regulated $Ca^{2+}$ entry in thapsigargin-pretreated neutrophils was decreased by the addition of tetrachloroauric acid and genistein. The effect of staurosporine on intracellular $Ca^{2+}$ mobilization was not observed. In conclusion, tetrachloroauric acid may suppress neutrophil responses through its inhibitory action on elevation of intracellular $Ca^{2+}$ level and protein kinase C. It might exhibit an inhibitory effect on the action of protein tyrosine kinase. Tetrachloroauric acid depresses cytokine production by macrophages.

  • PDF