• 제목/요약/키워드: Macrophages

검색결과 2,556건 처리시간 0.032초

The Macrophage-Specific Transcription Factor Can Be Modified Posttranslationally by Ubiquitination in the Lipopolysaccharide-Treated Macrophages

  • Jung, Jae-Woo;Choi, Jae-Chol;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui;Shin, Jong-Wook;Christman, John William
    • Tuberculosis and Respiratory Diseases
    • /
    • 제70권2호
    • /
    • pp.113-124
    • /
    • 2011
  • Background: Macrophages are one of the most important inflammatory cells in innate immunity. PU.1 is a macrophage-specific transcription factor. Ubiquitins are the ultimate regulator of eukaryotic transcription. The ubiquitination process for PU.1 is unknown. This study investigated the lipopolysaccharide (LPS)-induced activation of PU.1 and its relation to ubiquitins in the macrophages. Methods: Raw264.7 cells, the primary cultured alveolar, pulmonary, and bone marrow derived macrophages were used. The Raw264.7 cells were treated with MG-132, $NH_4Cl$, lactacytin and LPS. Nitric oxide and prostaglandin D2 and E2 were measured. Immunoprecipitation and Western blots were used to check ubiquitination of PU.1. Results: The PU.1 ubiquitination increased after LPS ($1{\mu}g$/mL) treatment for 4 hours on Raw264.7 cells. The ubiquitination of PU.1 by LPS was increased by MG-132 or $NH_4Cl$ pretreatment. Two hours of LPS treatment on macrophages, PU.1 activation was not induced nor increased with the inhibition of proteasomes and/or lysosomes. The ubiquitination of PU.1 was increased in LPS-treated Raw264.7 cells at 12- and at 24 hours. LPS-treated cells increased nitric oxide production, which was diminished by MG-132 or $NH_4Cl$. LPS increased the production of $PGE_2$ in the alveolar and peritoneal macrophages of wild type mice; however, $PGE_2$ was blocked or diminished in Rac2 null mice. Pretreatment of lactacystin increased $PGE_2$, however it decreased the $PGD_2$ level in the macrophages derived from the bone marrow of B57/BL6 mice. Conclusion: LPS treatment in the macrophages ubiquitinates PU.1. Ubiquitination of PU.1 may be involved in synthesis of nitric oxide and prostaglandins.

백굴채약침액(白屈菜藥針液)이 LPS로 유도(誘導)된 RAW 264.7 대식세포(大食細胞)에서의 항염증효과(抗炎症效果) (Effects of Chelidonii Herbal-acupuncture solution Anti-inflammatory in RAW 264.7 macrophages)

  • 박동천;박지현;이우경;이진규;서일복;김호현;김정선;김이화
    • Korean Journal of Acupuncture
    • /
    • 제21권2호
    • /
    • pp.125-137
    • /
    • 2004
  • Objectives : Recently, Herbal-acupuncture therapeutics has been used for the treatment of inflammatory diseases such as rheumatoid arthritis. Especially, we have been interested in chemical mediators concerned with inflammation such as prostaglandin, cytokine, nitrous oxide. The purpose of this study is investigated that the effect of Chelidonii Herbal-acupuncture solution in lipopolysaccharide-stimulated RAW 264.7 macrophages, performed several expeimental items : those are prostaglandin $E_2$, nitric oxide and cyclooxygenase-2. Methods : The cytotoxicity of Chelidonii Herbal-acupuncture solution in RAW 264.7 macrophages were measured by MTT-based cytotoxicity assay. In order to observe cyclooxygenase-2 mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, RT-PCR was used. Prostaglandin $E_2$ formation and nitric oxide production was measured by competitive enzyme immunoassay and Griess assay. Results : 1.The MTT assay demonstrated that cytotoxic effect of Chelidonii Herbal-acupuncture solution in RAW 264.7 macrophages were not appeared before concentration of 1mg/ml. 2.Chelidonii Herbal-acupuncture solution inhibited cyclooxygenase-2 mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. 3. Chelidonii Herbal-acupuncture solution inhibited nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 macrophages. 4. Chelidonii Herbal-acupuncture solution inhibited prostaglandin $E_2$ formation in lipopolysaccharide-stimulated RAW 264.7 macrophages. Conclusions : On the basis of these results, It was shown that Chelidonii Herbal-acupuncture solution is significantly able to inhibit the production of $PGE_2$ and NO, as well as COX-2 mRNA expression. Our results may provide new mechanism by which Chelidonii Herbal-acupuncture solution accounts for its beneficial effect on accelerating wound healing and anti-inflammation.

  • PDF

Anti-oxidant and Anti-inflammatory Effects of Acanthopanacia Cortex Hot Aqueous Extract on Lipopolysaccharide(LPS) Simulated Macrophages

  • Jo, Na Young;Roh, Jeong Du
    • Journal of Acupuncture Research
    • /
    • 제31권1호
    • /
    • pp.131-137
    • /
    • 2014
  • Objectives : This study is to investigate the effects of Acanthopanacis Cortex hot aqueous extract on nitric oxide(NO), prostaglandin E2(PGE2) production and DPPH(1,1-diphenyl-2-picryl hydrazyl) radical scavenging activity in macrophages. Methods : Acanthopanacis Cortex(200 g) was heated at $100^{\circ}C$ with distilled water(2 L) for 4hrs. The extract was filtered and concentrated to 100 ml using a rotary evaporator and was frozen at $-80^{\circ}C$, then was freeze-dried. The RAW 264.7 macrophages were subcultured. In order to evaluate cytotoxicity, MTT assay was performed. Experimental groups were divided into five(control, AC 25, 50, 100 and 200 ${\mu}g/ml$) and we measured cytotoxicity. The concentrations of NO were preprocessed by Griess assay. The RAW 264.7 macrophages was pretreated by 10 ${\mu}g/ml$ LPS and experimental groups were divided into five and we measured NO production. The concentrations of $PGE_2$ were measured by enzyme immunoassay. The RAW 264.7 macrophages was pretreated by 10 ${\mu}g/ml$ LPS. Experimental groups were divided into five and we measured $PGE_2$ production. Antioxidant activity was measured by the DPPH method. experimental groups were divided into four(AC 25, 50, 100 and 200 ${\mu}g/ml$) and we measured DPPH radical scavenging activity. Results : 1. Viability of RAW 264.7 macrophages did not significantly decrease in 25, 50 and 100 ${\mu}g/ml$ Acanthopanacis Cortex hot aqueous extract compared to control group. 2. NO production in LPS-stimulated RAW 264.7 macrophages significantly inhibited in 100, 200 ${\mu}g/ml$ Acanthopanacis Cortex hot aqueous extract compared to control group. 3. $PGE_2$ production in LPS-stimulated RAW 264.7 macrophages significantly inhibited in 100, 200 ${\mu}g/ml$ Acanthopanacis Cortex hot aqueous extract compared to control group. 4. DPPH radical scavenging capability of Acanthopanacis Cortex hot aqueous extract in RAW 264.7 macrophages had the high level in 100, 200 ${\mu}g/ml$. Conclusion : According to the results, Acanthopanacis Cortexx hot aqueous extract has ability to suppress NO, $PGE_2$ production and improve DPPH free radical scavenging activity. So Acanthopanacis Cortex hot aqueous extract may have an anti-inflammation effect and antioxidant activity.

NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

  • Liu, Qihui;Tian, Yuan;Zhao, Xiangfeng;Jing, Haifeng;Xie, Qi;Li, Peng;Li, Dong;Yan, Dongmei;Zhu, Xun
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.886-894
    • /
    • 2015
  • Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-$Gu{\acute{e}}rin$) activates disabled $na{\ddot{i}}ve$ macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). 1 The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-${\alpha}$), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-$1{\beta}$), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-${\beta}$) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

Protective Effects of Antoxidant Enzymes of Candida albicans against Oxidative Killing by Macrophages

  • Kim, Hye-Jin;Na, Byoung-Kuk;Kim, Moon-Bo;Park, Duk-Young;Song, Chul-Yong
    • Journal of Microbiology
    • /
    • 제37권2호
    • /
    • pp.117-122
    • /
    • 1999
  • Protective roles of antioxidant enzymes, copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), and catalase of Candida albicans against exogenous reactive oxygens and oxidative killing by macrophages were investigated. The initial growth of C. albicans was inhibited by reactive, oxygen-producing chemicals such as hydrogen peroxide, pyrogallol, and paraquat, but it was restored as the production of antioxidant enzymes were increased. The growth inhibition of C. albicans by reactive, oxygen-producing chemicals was reduced by treating the purified candidal SOD and catalase. Also, in the presence of SOD and catalase, the oxidative killing of C. albicans by macrophages was significantly inhibited. These results suggest that antioxidant enzymes, CuZnSOD, MnSOD, and catalase of C. albicans may play important roles in the protection of C. albicans not only from exogenous oxidative stress but also from oxidative killing by macrophages.

  • PDF

오미소독음이 마우스 복공 대식세포에서 NO의 분필과정에 미치는 영향 (Inhibitory Effect of Omisodok-eum on the Secretion of NO in LPS-stimulated Mouse Peritoneal Macrophages)

  • 박혜중;윤화정;윤정원;윤소원;고우신
    • 동의생리병리학회지
    • /
    • 제16권5호
    • /
    • pp.921-927
    • /
    • 2002
  • Inflammation is localized response to foreign substance such as bacteria or in some instance to internally produced substances and has relation with immunity system. The macrophages plays a role in the development of the Iymphohaemopoietic system before and after birth, as well as in the natural and acquired immune responses of adult to immunogens, including infectious agents. NO have been suggested to play an important role in endotoxin-mediated shock and imflammation. In this study, we investigated the effect of Omisodok-eum on the production of NO. The Omisodok-eum inhibited the secretion of NO in LPS-stimulated mouse peritoneal macrophages, without affecting cell viability. The protein level of inducible nitric oxide synlhase(iNOS) in peritoneal macrophages was also decreased by Omisodok-eum. These results suggest that Omisodok-eum suppresses the endotoxin-induced inflammatory responses through inhibiting the production of NO

대식세포에서 국산약용식물의 항암 및 항Virus에 대한 효과 (Antiviral and Antitumoral Activitivies of Domestic Medicinal Plants in Macrophages)

  • 엄성희;김대근;곽종환;이강노;이동권;표석능;지옥표
    • 생약학회지
    • /
    • 제26권3호
    • /
    • pp.259-264
    • /
    • 1995
  • In the present work, 70 extracts from 23 plants have been determined to induce cytotoxic and antiviral activities of macrophages using both MTT assay and neutral red dye uptake assay. We show that 13 extracts have induced cytotoxic activities and 5 extracts induced antiviral activity in mouse peritoneal macrophages. Among 13 extracts, macrophages treated with extracts from Salvia plebeia have demonstrated significant cytotoxicity but not antiviral activity. The present findings indicate that extracts from plants can stimulate macrophages to become resistant to virus and to kill tumor cells.

  • PDF

영지버섯 생장점 단백다당체 GLB의 대식세포 활성화 효과 (Activation of Macrophages by GLB, a Protein-polysaccharide of the Growing Tips of Ganoderma Lucidum)

  • 오정연;조경주;정수현;김진향;;정경수
    • 약학회지
    • /
    • 제42권3호
    • /
    • pp.302-306
    • /
    • 1998
  • In the previous study we described the antitumor activity of GLB, a protein-polysaccharide fraction of the growing tips of Ganoderma lucidum, against sarcoma 180 solid tu mor in ICR mice. In this study we investigated the stimulatory activity of GLB on macrophages. When analyzed using a flow cytometer, GLB ($100{\mu}g/ml$) was found to increase the phagocytic activity of the BALB/c mouse peritoneal macrophages as well as chicken macrophage BM2CL cells against FITC-labeled C.albicans by 55.2% and 21.2%, respectively. GLB also increased the spreading and the expression of MHC class II molecules of BM2CL cells as well as the mouse peritoneal macrophages. From these results, it is clear that GLB is a strong stimulator to the macrophages.

  • PDF

Pretreatment of Macrophages with Paclitaxel Inhibits iNOS Expression

  • Li Mei-Hong;Kang Jong-Soon;Kim Hwan-Mook;Jeon Young-Jin
    • Toxicological Research
    • /
    • 제22권2호
    • /
    • pp.103-107
    • /
    • 2006
  • We demonstrate that paclitaxel, an antitumor agent derived from yew tree, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells. Previously, paclitaxel has been known to induce iNOS gene expression in macrophages. However, in this report we described that the pre-treatment of macrophages with paclitaxel ($0.1{\mu}M$) for 8 h inhibited LPS-induced iNOS gene expression. Pretreatment of RAW 264.7 cells with paclitaxel significantly inhibited LPS-stimulated nitric oxide (NO) production. Western immunoblot of iNOS and RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression in RAW 264.7 cells. Immunocytochemical staining of iNOS further confirmed that pretreatment of macrophages with paclitaxel inhibited macrophage activation. Electrophoretic mobility shift assay showed that paclitaxel inhibited $NF-_{\kappa}/Rel$ DNA binding. Collectively, these series of experiments indicate that paclitaxel inhibits iNOS gene expression by blocking $NF-_{\kappa}B/Rel$ activation.

The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophages

  • Heo, Seong-Yeong;Ko, Seok-Chun;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • 제21권5호
    • /
    • pp.14.1-14.8
    • /
    • 2018
  • The objective of this study was to investigate the anti-inflammatory effects of the pepsinolytic hydrolysate from the fish frame, Johnius belengerii, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The J. belengerii frame hydrolysate (JFH) significantly suppressed nitric oxide (NO) secretion on LPS-stimulated RAW264.7 macrophages. Moreover, the JFH markedly inhibited the levels of protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the LPS-stimulated mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 was downregulated when cells were cultured with the JFH. The JFH significantly reduced the phosphorylation of c-Jun N-terminal kinase (JNK) and the translocation of nuclear factor-kappa B ($NF-{\kappa}B$) in macrophages. As the result, the JFH has the potential anti-inflammatory activity via blocking the JNK and $NF-{\kappa}B$ signal pathways.