• Title/Summary/Keyword: Macrolide antibiotics

Search Result 80, Processing Time 0.023 seconds

Emergence of macrolide resistance and clinical use of macrolide antimicrobials in children (Macrolide계 항균제 내성 출현과 소아에서의 임상적 적용)

  • Choi, Eun Hwa
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1031-1037
    • /
    • 2008
  • Macrolide antimicrobial agents including erythromycin, roxithromycin, clarithromycin, and azithromycin are commonly used in the treatment of respiratory tract infections in children. Newer macrolides that have structural modifications of older drug erythromycin show improved change in the spectrum of activity, dosing, and administration. However, recent studies reported that increasing use of macrolide antibiotics is the main force driving the development of macrolide resistance in streptococci. In particular, azithromycin use is more likely to select for macrolide resistance with Streptococcus pneumoniae than is clarithromycin use, a possible reflection of its much longer half life. Recently, erythromycin resistance rates of S. pneumoniae and Streptococcus pyogenes are rapidly increasing in Korea. Two main mechanisms of acquired macrolide resistance have been described, altered binding site on the bacterial ribosome encoded by the ermB gene and active macrolide efflux pump encoded by the mef gene. Relationship between the susceptibility of S. pneumoniae and the response to macrolides has been shown in studies of acute otitis media, but less clear in cases of pneumonia. This article reviews the spectrum of activity, pharmacokinetic properties, mechanisms of action and resistance, and clinical implication of resistance on the treatment of respiratory tract infections in children.

Cloning of Inducible MLS Antibiotics Resistance Genes and their Expression Control Mechanism - ermC-4, a macrolide-lincosamide-streptogramin B resistance determinant on pMB4 from Staphylococcus aureus TR-1 (MLS계 항생물질 유도내성 유전자의 크로닝과 유전자의 발현조절 기전 - Staphylococus aureus TR-1균주의 프라스미드 pMB4에 존재하는 MLS 내성 유전자 ermC-4)

  • 김수환;최응칠;김병각;심미자
    • YAKHAK HOEJI
    • /
    • v.35 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • pMB4 is a 2.4-kilobase plasmid of Staphylococcus aureus TR-1 that confers inducible resistance to the macrolide-lincosamide-streptogramin B(MLS) antibiotics. By subcloning studies, it was found that the MLS resistance determinant was located at 1.0Kb fragment between Sau3AI and TaqI sites. DNA sequence of the MLS resistant determinant, named ermC-4 was determined, and found to be highly homologous with that of ermC. Because the leader peptide sequence of ermC-4 was identical with that of ermC, the expression of the resistance gene is thought to be controlled by posttranscriptional attenuation in S. aureus TR-1.

  • PDF

Novel Macrolide Actin-inhibitors Isolated from Sea Sponges

  • Karaki, Hideaki;Ozaki, Hiroshi
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.105-108
    • /
    • 2001
  • Several marine toxins with macrolide structure have been found to act on actin. One of these toxins is mycalolide B isolated from the genus Mycale. This compound belongs to macrolide antibiotics and consists of tris-oxazole with strong cytotoxic activity ($IC_{50}$: 10-50 nM for growth of L1210 murine leukemia cells). This compound was found to be an actin-depolymerizing agent with the mode of action distinct from that of the known actin inhibitor, cytochalasin D. Tolytoxin, a macrolide isolated from cyano-bacteria with similar chemical structure to mycalolide B, seems to have similar effect. Another macrolide compound, aplyronine A, showed the effects similar to those of mycalolide B. Although bistheonellide A, a dimeric macrolide, did not show a severing effect, it de polymerized F-actin and sequestered G-actin by forming 1 : 2 complex with G-actins. Swinholide A has a structure and effects similar to those of bistheonel-lide A. In conclusion, mycalolide B, tolytoxin, aplyronine A, bistheonellide A and swinholide A are the members of "actin de polymerizing macrolide" the mechanism of which is different from that of cytochalasin D.halasin D.

  • PDF

Current perspectives on atypical pneumonia in children

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.12
    • /
    • pp.469-476
    • /
    • 2020
  • The major pathogens that cause atypical pneumonia are Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella pneumophila. Community-acquired pneumonia (CAP) caused by M. pneumoniae or C. pneumoniae is common in children and presents as a relatively mild and self-limiting disease. CAP due to L. pneumophila is very rare in children and progresses rapidly, with fatal outcomes if not treated early. M. pneumoniae, C. pneumoniae, and L. pneumophila have no cell walls; therefore, they do not respond to β-lactam antibiotics. Accordingly, macrolides, tetracyclines, and fluoroquinolones are the treatments of choice for atypical pneumonia. Macrolides are the first-line antibiotics used in children because of their low minimum inhibitory concentrations and high safety. The incidence of pneumonia caused by macrolide-resistant M. pneumoniae that harbors point mutations has been increasing since 2000, particularly in Korea, Japan, and China. The marked increase in macrolide-resistant M. pneumoniae pneumonia (MRMP) is partly attributed to the excessive use of macrolides. MRMP does not always lead to clinical nonresponsiveness to macrolides. Furthermore, severe complicated MRMP responds to corticosteroids without requiring a change in antibiotic. This implies that the hyper-inflammatory status of the host can induce clinically refractory pneumonia regardless of mutation. Empirical macrolide therapy in children with mild to moderate CAP, particularly during periods without M. pneumoniae epidemics, may not provide additional benefits over β-lactam monotherapy and can increase the risk of MRMP.

Therapeutic Efficacy and Safety of Prolonged Macrolide, Corticosteroid, Doxycycline, and Levofloxacin against Macrolide-Unresponsive Mycoplasma pneumoniae Pneumonia in Children

  • Ha, Seok Gyun;Oh, Kyung Jin;Ko, Kwang-Pil;Sun, Yong Han;Ryoo, Eell;Tchah, Hann;Jeon, In Sang;Kim, Hyo Jeong;Ahn, Jung Min;Cho, Hye-Kyung
    • Journal of Korean Medical Science
    • /
    • v.33 no.43
    • /
    • pp.268.1-268.11
    • /
    • 2018
  • Background: We aimed to compare the therapeutic efficacy of prolonged macrolide (PMC), corticosteroids (CST), doxycycline (DXC), and levofloxacin (LFX) against macrolide-unresponsive Mycoplasma pneumoniae (MP) pneumonia in children and to evaluate the safety of the secondary treatment agents. Methods: We retrospectively analyzed the data of patients with MP pneumonia hospitalized between January 2015 and April 2017. Macrolide-unresponsiveness was clinically defined with a persistent fever of ${\geq}38.0^{\circ}C$ at ${\geq}72$ hours after macrolide treatment. The cases were divided into four groups: PMC, CST, DXC, and LFX. We compared the time to defervescence (TTD) after secondary treatment and the TTD after initial macrolide treatment in each group with adjustment using propensity score-matching analysis. Results: Among 1,165 cases of MP pneumonia, 190 (16.3%) were unresponsive to macrolides. The proportion of patients who achieved defervescence within 48 hours in CST, DXC, and LFX groups were 96.9% (31/33), 85.7% (12/14), and 83.3% (5/6), respectively. The TTD after initial macrolide treatment did not differ between PMC and CST groups (5.1 vs. 4.2 days, P = 0.085), PMC and DXC groups (4.9 vs. 5.7 days, P = 0.453), and PMC and LFX groups (4.4 vs. 5.0 days, P = 0.283). No side effects were observed in the CST, DXC, and LFX groups. Conclusion: The change to secondary treatment did not show better efficacy compared to PMC in children with macrolide-unresponsive MP pneumonia. Further studies are needed to guide appropriate treatment in children with MP pneumonia.

Exacerbation Prevention and Management of Bronchiectasis

  • Joon Young Choi
    • Tuberculosis and Respiratory Diseases
    • /
    • v.86 no.3
    • /
    • pp.183-195
    • /
    • 2023
  • Bronchiectasis, which is characterized by irreversibly damaged and dilated bronchi, causes significant symptoms, poor quality of life, and increased economic burden and mortality rates. Despite its increasing prevalence and clinical significance, bronchiectasis was previously regarded as an orphan disease, and ideal treatment of this disease has been poorly understood. The European Respiratory Society and British Thoracic Society have recently published guidelines to assist physicians in the clinical field. Guidelines and reports suggest comprehensive management that includes both non-pharmacological and pharmacological treatment. Physiotherapy and pulmonary rehabilitation are two of the most important non-pharmacologic therapies in bronchiectasis patients; long-term inhaled antibiotics and macrolide therapy have gained significant evidence in reducing exacerbation risk in frequent exacerbators. In this review, we summarize recent updates on bronchiectasis treatment to prevent exacerbation and manage clinical deterioration.

New Antibiotics Produced by Streptomyces melanosporofaciens II. Antimicrobial Activities and Isolation, Purification, and Structure Determination of the Active Compound (Streptomyces melanosporofaciens가 생산하는 새로운 항생물질 II. 물질의 항균활성과 황성물질의 분리.정제 및 구조결종)

  • 김시관;김상석;김근수;정영륜;김창한
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.235-241
    • /
    • 1991
  • - A phthalic acid derivative and basic macrolide antibiotics, with antimicrobial activity against Gram positive bacteria and phytopathogenic fungi, respectively, were found to be produced by a strain 88-GT-161 identified as being a variety of Streptomyces melanosporofaciens. This paper describes an isolation procedure of the active compounds produced by this strain, their in vitro and in vivo (pot test) antimicrobial activites, and structure determination of one of the compounds, bis (2-ethylhexyl) phthalate, a phthalic acid derivative antibiotic. This compounds, upon cornparision with authentic bis (2-ethylhexyl) phthalate, dioctyl phthalate, revealed a difference in antimicrobial activity even though physico-chemical properties of these two compounds seemed indentical. This is the first report that dioctyl phthalate is biosynthetically produced by a Streptomyces sp. and shows antimicrobial activity.

  • PDF

Antitumoral Macrolide Antibiotics from Streptomyces sp. Ba16 (방선균에서 분리한 Macrolide 계 항암활성물질)

  • Kim, Hang-Sub;Kim, Se-Eun;Lee, Sung-Woo;Bang, Hee-Jae;Kim, Young-Ho;Lee, Jung-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.368-372
    • /
    • 1994
  • Three more unusual macrolides in addition to concnamycin B were isolated from the mycelium of Streptomyces sp. strain Bal6. These four compounds showed a potent cytotoxity to hunian cancer cell lines, SNU-1 (stomach cancer cell line), SNU-354 (liver cancer cell line), MCF- 7 (breast cancer cell line) and KB-3-1 (oral epidermoid carcinoma cell line). Interestingly, these compounds confered slight differential cytotoxity on RHEK-1, a human epidermal keratinocyte cell line immotalized by AD12-SV40 hybrid virus and RHEK-1/pSV$_{2}$ ras which was resulted from H-ras transfomation of RHEK-1. These compounds were determined to be concanamycin A, conca- namycin E and 0-methyl concanamycin B by NMR and other spectral analysis.

  • PDF

The Prevalence of Macrolide Antibiotics Resistance in the Clinical Isolates of Common Respiratory Pathogens (임상분리 호흡기 감염증 원인 균주에서의 Macrolide계 항생물질의 내성)

  • Yoon Eun-Jeong;Ha Jang-Bum;Choi Eung-Chil;Shim Mi-Ja
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.364-368
    • /
    • 2004
  • The prevalence of resistance to a range of macrolides was determined for clinical isolates of common respiratory pathogens using NCCLS testing methods and interpretative criter ia.71.4% of Streptococcus pneumoniae, 62.3% of Staphylococcus aureus, 50.8% of coagulase-negative staphylococci and 4.4% of Strpetococcus pyogenes were erythromycin resistant. Also, the rates of resistance to other macrolides and clindamycin in these clinical isolates were as high as to eryth -romycin. Almost all of the macrolide-resistant isolates were positive for erm of the methylase gene, or mef of the efflux gene.