• Title/Summary/Keyword: Macrocyclic structure

Search Result 68, Processing Time 0.021 seconds

Synthesis and Characterization of Various Di-N-Functionalized Tetraaza Macrocyclic Copper(II) Complexes

  • Kang, Shin-Geol;Kim, Na-Hee;Lee, Rae-Eun;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1781-1786
    • /
    • 2007
  • Two copper(II) complexes, [CuL3](ClO4)2 bearing one N-CH2CH2CONH2 group as well as one N-CH2CH2CN group and [CuL4](ClO4)2 bearing two N-CH2CH2CONH2 groups, have been prepared by the selective hydrolysis of [CuL2](ClO4)2 (L2 = C-meso-1,8-bis(cyanoethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). The complex [CuL5](ClO4)2 bearing one N-CH2CH2C(=NH)OCH3 and one N-CH2CH2CN groups has been prepared as the major product from the reaction of [CuL2](ClO4)2 with methanol in the presence of triethylamine. In acidic aqueous solution, the N-CH2CH2C(=NH)OCH3 group of [CuL5](ClO4)2 undergoes hydrolysis to yield [CuL6](ClO4)2 bearing both N-CH2CH2COOCH3 and N-CH2CH2CN groups. The crystal structure of [CuL5](ClO4)2 shows that the complex has a slightly distorted square-pyramidal coordination polyhedron with an apical Cu-N (N-CH2CH2C(=NH)OCH3 group) bond. The apical Cu-N bond distance (2.269(3) A) is ca. 0.06 A longer than the apical Cu-O (N-CH2CH2CONH2 group) bond of [CuL4](ClO4)2. The pendant amide group of [CuL3](ClO4)2 is involved in coordination. The carboxylic ester group of [CuL6](ClO4)2 is also coordinated to the metal ion in various solvents but is removed from the coordination sphere in the solid state.

Synthesis and Characterization of New Polyaza Macrocyclic Nickel(Ⅱ) and Copper(Ⅱ) Complexes Two Nitrile or Imidate Ester Pendant Arms: Metal-Mediated Hydrolysis and Alcoholysis of the Nitrile Groups

  • Kang, Shin-Geol;Song, Jeong-Hoon;Jeong, Jong-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.824-829
    • /
    • 2002
  • New di-N-cyanomethylated tetraaza macrocycle 2.13-bis(cyanomethyl)-5.16-dimethyl-2,6,13,17-tetraazatricyclo[$16.4.0.0^7.12$]docosane $(L^2)$ has been prepared by the reaction of 3, 14-dimethyl-2,6,13,17-tetraazatricyclo $(L^1)$ with bromoacetonitrile. The square-planar complexes $[ML^2](ClO_4)_2(M=Ni(II)$ or Cu(II) can be prepared by the reaction of $L^2$ with the corresponding metal ion in acetonitrile. The cyanomethyl groups of $[ML^2](ClO_4)_2readily$ react with water to $yield[ML^3](ClO_4)_2$ containing pendant amide groups. The trans-octahedral complexes $[ML^4](ClO_4)_2$, in which two imidate ester groups are coordinated to the metal ion, can be also prepared by the reaction of $[ML^2](ClO_4)_2with$ methanol under mild conditions. The hydrolysis and alcoholysis reactions of $[ML^2](ClO_4)_2are$ promoted by the central metal ion, in spite of the fact that the cyanomethyl group is not involved in intramolecular coordination. The reactions are also promoted by a base such as triethylamine but are retarded by an $acid(HClO_4).Interestingly$, the imidate ester groups of $[ML^4]^2$ are unusually resistant to hydrolysis even in 0.1 M $HCIO_4$ or 0.1 M NaOH aqueous solution. Crystal structure of $[NiL^4](ClO_4)_2shows$ that the Ni-N (pendant imidate ester group) bond is rlatively strong; the Ni-N bond distance is shorter then the Ni-N(tertiary) distance and is similar to the Ni-N (secondary) distance.

Synthesis and Characterization of Dinuclear Ni(II) Complexes with Tetraazadiphenol Macrocycle Bearing Cyclohexanes

  • Kim, Ki-Ju;Jung, Duk-Sang;Kim, Duk-Soo;Choi, Chi-Kyu;Park, Ki-Min;Byun, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1747-1751
    • /
    • 2006
  • The dinuclear tetraazadiphenol macrocyclic nickel(II) complexes [$Ni_2$([20]-DCHDC)]$Cl_2$ (I), [$Ni_2$([20]-DCHDC)]$(ClO_4)_2{\cdot}2CH_3CN $ (II(b)) and [$Ni_2$([20]-DCHDC)$(NCS)_2$] (III) {$H_2$[20]-DCHDC = 14,29-dimethyl-3,10,18,25-tetraazapentacyclo-[25,3,1,$0^{4,9}$,$1^{12,16}$,$0^{19,24}$]ditriacontane-2,10,12,14,16(32),17,27(31), 28,30-decane-31,32-diol} have been synthesized by self-assembly and characterized by elemental analyses, conductances, FT-IR and FAB-MS spectra, and single crystal X-ray diffraction. The crystal structure of II(b) is determined. It crystallizes in the monoclinic space group P2(1)/c. The coordination geometries around Ni(II) ions in I and II(b) are identical and square planes. In complex III each Ni(II) ion is coordinated to $N_2O_2$ plane from the macrocycle and N atoms of NCS- ions occupying the axial positions, forming a square pyramidal geometry. The nonbonded Ni…Ni intermetallic separation in the complex II(b) is 2.8078(10) $\AA$. The FAB mass spectra of I, II and III display major fragments at m/z 635.1, 699.4 and 662.4 corresponding to [$Ni_2$([20]-DCHDC)(Cl + 2H)]$^+$, [$Ni_2$([20]-DCHDC)$(ClO_4\;+\;2H)]^+$ and [$Ni_2$([20]-DCHDC)(NCS) + 6H]$^+$, respectively.

Electronic structure of potassium-doped copper phthalocyanine studied by photoemission spectroscopy and density functional calculations

  • Im, Yeong-Ji;Kim, Jong-Hun;Ji, Dong-Hyeon;Jo, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.142.2-142.2
    • /
    • 2016
  • The metal intercalation to an organic semiconductor is of importance since the charge transfer between a metal and an organic semiconductor can induce the highly enhanced conductivity for achieving efficient organic electronic devices. In this regard, the changes of the electronic structure of copper phthalocyanine (CuPc) caused by the intercalation of potassium are studied by ultraviolet photoemission spectroscopy (UPS) and density functional theory (DFT) calculations. Potassium intercalation leads to the appearance of an intercalation-induced peak between the highest molecular occupied orbital (HOMO) and the lowest molecular unoccupied orbital (LUMO) in the valence-band spectra obtained using UPS. The DFT calculations show that the new gap state is attributed to filling the LUMO+1, unlike a common belief of filling the LUMO. However, the LUMO+1 is not conductive because the ${\pi}$-conjugated macrocyclic isoindole rings on the molecule do not make a contribution to the LUMO+1. This is the origin of a metal-insulator transition through heavily potassium doped CuPc.

  • PDF

Synthesis and Molecular Structure of Macrocyclic Chlorotetraamine Cadmium(II) Complex (거대고리 Chlorotetraamine Cadmium(II) 착물의 합성과 분자 구조)

  • 최기영;서일환;추금홍
    • Korean Journal of Crystallography
    • /
    • v.11 no.3
    • /
    • pp.133-136
    • /
    • 2000
  • The molecular structure of [Cd(L)Cl]Cl·2H₂O(1)(L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0/sup 1.18/,0/sup 7.12/]docosane) has been determined by X-ray diffraction. Crystallographic dta for 1: triclinic space group P1, a=9.671(1), b=10.784(1), c=12.679(2)Å, α=112.31(1), β=99.49(1), γ=93.95(1)°, V=1230.6(3)ų, Z=2, R=0.0779. The coordination of the cadmium atom is a distorted square-pyramid with four secondary amines of the macrocycle occupying the basal sites (Cd-N/sub av/=2.300(3)Å) and a terminal chlorine atom at the axial position with a Cd-Cl(1) distance of 2.463(2)Å.

  • PDF

Cyclometalated Platinum(II) Complexes Derived from a Chiral Pyridine Ligand: Synthesis, Structure, and Catalytic Activity

  • Yoon, Myeong-Sik;Ryu, Do-Wook;Kim, Jeong-Ryul;Ramesh, Rengan;Ahn, Kyo-Han
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.2045-2050
    • /
    • 2007
  • The reactions of mercury(II) chloride with O3S2-donor macrocyclic ligands with (L1) and without (L2) dibenzosubunit afforded respective exo- (1) and endo-coordinated (2) complexes depending on the ring rigidity of the ligands. From the X-ray crystal structures and comparative NMR studies for the complexes 1 and 2, it is confirmed that the resulting species with different coordination modes exist not only in solid state but also in solution state.

Synthesis and Characterization of Homo Binuclear Macrocyclic Complexes of UO2(VI), Th(IV), ZrO(IV) and VO(IV) with Schiff-Bases Derived from Ethylene diamine/Orthophenylene Diamine, Benzilmonohydrazone and Acetyl Acetone

  • Mohapatra, R.K.;Ghosh, S.;Naik, P.;Mishra, S.K.;Mahapatra, A.;Dash, D.C.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • A series of homo binuclear complexs of the type $[M_2(L/L^')(NO_3)n].mH_2O$, [where $M=U{O_2}^{2+},\;Th^{4+},\;ZrO^{2+}$] and $[(VO)_2(L/L^')(SO_4)_2]{\cdot}2H_2O$, L=1,5,6,9,12,15,16,20 octaaza-7,813,14-tetraphenyl-2,4,17,19-tetramethyl-1,4,6,8,12,14,16,19-docosaoctene (OTTDO) or L'=10:11;21:22-dibenzo-1,5,6,9,12,15,16,20-octaaza-7,813,14-tetraphenyl-2,4,17,19-tetramethyl-1,4,6,8,12,14,16,19-docosaoctene (DOTTOT), n=4 for $U{O_2}^{2+}$, $ZrO^{2+}$ n=8 for $Th^{4+}$ m=1,2,3 respectively, have been synthesized in template method from ethylenediamine/orthophenylene diamine, benzil monohydrazone and acetyl acetone and characterized on the basis of elemental analysis, thermal analysis, molar conductivity, magnetic moment, electronic, infrared, $^1H$-NMR studies. The results indicate that the VO(IV) ion is penta co-ordinated yielding paramagnetic complexes; $UO_2(VI)$, ZrO(IV) ions are hexa co-ordinated where as Th(IV) ion is octa co-ordinated yielding diamagnetic complexes of above composition. The fungi toxicity of the ZrO(IV) and VO(IV) complexes against some fungal pathogen has been studied.

A Macrocyclization of (2R)-2-(N,N-Ditosylimido) -3-butenyl methyl malonate by Using Palladium Catalyst (팔라듐 촉매를 이용한 (2R)-2-(N,N-Ditosylimido)-3-butenyl methyl malonate의 거대고리화 반응)

  • Kim, Gyu-Soon;Rhee, Hak-June
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.30-36
    • /
    • 2000
  • Upon Pd(0)-catalyzed coupling reaction of (2R)-2-(N,N-ditosylimido)-3-butenyl methyl malonate (4) which was selected for the total synthesis of A-factor, (3R)-2-(6-methylheptanoyl)-3-hydroxy methyl-4-buttinolide (1), an unexpected 14-membered cyclic compound, bis(2-methoxycabonyl-(4E)-hexenolide) (15) was obtained. The structure of this compound was conformed by X-ray crystallography. This result implies that this method can be applied the synthesis of various size of symmetrical macrocyclic compounds.

  • PDF

Crystal Structure of Macrocyclic Chlorotetraamine Zinc(II) Complex (거대고리 Chlorotetraamine Zinc(II) 착물의 결정구조)

  • 최기영;박병빈;서일환;김진규;박영수
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.42-45
    • /
    • 2000
  • The complex [Zn(L)Cl](H₂O)(ClO₄) (1) (L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,O/sup 1.18/,O/sup 7.12/]docosane) has been prepared and characterized by X-ray crystallography. 1 crystallizes in the monoclinic space group P2₁/c, with a=8.883(1), b=19.319(9), c=15.124(2)Å, β=101.65(1)°, V=2542.0(13) ų, Z=4, R₁(wR₂) for 4457 observed reflections of [I>2σ(I)] was 0.0640(0.1557). The coordination geometry around the zinc is a distorted square-pyramid with four nitrogen atoms of the macrocycle occupying the basal sites(Zn-N/sub av/=2.131(2)Å) and a chloride atom at the axial position with the Zn-Cl distance of 2.315(2)Å.

  • PDF

Macrocyclic Tetraamine Bis(isocyanato-N)nickel (II) Complex

  • Park, Ki-Young;Kim, Moon-Jib;Lee, Chang-Hee;Seong, Baek-Seok;Lee, Jin-Ho;Suh, Il-Hwan
    • Korean Journal of Crystallography
    • /
    • v.9 no.2
    • /
    • pp.92-95
    • /
    • 1998
  • The structure of bis(isocyanto-N)nickel (II) complex, [Ni(L)(NCO)2] (L: 2,5,9,12-tetramethyl-1,4,8,11-tetraazacyclotetradecane), is centrosymmetric and the central nickel has an axially elongated octahedral geometry with two nitrogen atoms of the isocyanate ligand.

  • PDF