• Title/Summary/Keyword: Macrochannel

Search Result 3, Processing Time 0.021 seconds

Flow Characteristics in a Microchannel Fabricated on a Silicon Wafer (실리콘 웨이퍼 상에 제작된 미소 유로에서의 유동특성)

  • Kim, Hyeong-U;Won, Chan-Sik;Jeong, Si-Yeong;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1844-1852
    • /
    • 2001
  • Recent developments in microfluidic devices based on microelectromechanical systems (MEMS) technique find many practical applications, which include electronic chip cooling devices, power MEMS devices, micro sensors, and bio-medical devices among others. For the design of such micro devices, flows characteristics inside a microchannel have to be clarified which exhibit somewhat different characteristics compared to conventional flows in a macrochannel. In the present study microchannels of various hydraulic diameters are fabricated on a silicon wafer to study the pressure drop characteristics. The effect of abrupt contraction and expansion is also studied. It is found from the results that the friction factor in a straight microchannel is about 15% higher than that in a conventional macrochannel, and the loss coefficients in abrupt expansion and contraction are about 10% higher than that obtained through conventional flow analysis.

Hybrid Coextrusion and Lamination Process for Macrochanneled Bioceramic Scaffolds

  • Koh, Young-Hag;Bae, Chang-Jun;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.497-502
    • /
    • 2004
  • A hybrid coextrusion and lamination process has been developed to fabricate macrochanneled bioceramic scaffolds. This process was mainly composed of three steps (i.e., coextrusion of thermoplastic compound, lamination, and thermal treatment), forming unique pore channels in dense bioceramic body. Pore channels were formed by removing carbon black material, while calcium phosphate or Tetragonal Zirconia Polycrystals (TZP) with a calcium phosphate coating layer were used as dense body. Two kinds of pore structures were fabricated; that is, the pore channels were formed in uni- or three-directional array. Such macrochanneled bioceramic scaffolds exhibited the precisely controlled pore structure (pore size, porosity, and interconnection), offering excellent mechanical properties and cellular responses.

Convective Boiling Two-phase Flow in Trapezoidal Microchannels : Part 2-Heat Transfer Characteristics (사다리꼴 미세유로의 대류비등 2상유동 : 2부-열전달 특성)

  • Kim, Byong-Joo;Kim, Geon-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.718-725
    • /
    • 2011
  • Characteristics of flow boiling heat transfer in microchannels were investigated experimentally. The microchannels consisted of 9 parallel trapezoidal channels with each channel having 205 ${\mu}m$ of bottom width, 800 ${\mu}m$ of depth, $3.6^{\circ}$ of sidewall angle, and 7 cm of length. Tests were performed with R113 over a mass velocity range of 150~920 $kg/m^2s$, heat flux of 10~100 $kW/m^2$ and inlet pressures of 105~195 kPa. Flow boiling heat transfer coefficient in microchannels was found to be dominated by heat-flux. However the effect of mass velocity was not significant. Contrary to macrochannel trends, the heat transfer coefficient was shown to decrease with increasing thermodynamic equilibrium quality. A new correlation suitable for predicting flow boiling heat transfer coefficient was developed based on the laminar single-phase heat transfer coefficient and the nucleate boiling dominant equation. Comparison with the experimental data showed good agreement.