• Title/Summary/Keyword: Macroblock mode

Search Result 78, Processing Time 0.028 seconds

Bitrate Adaptive Intra Refresh for MPEG-4 Video (MPEG-4 비디오에서의 비트율 적응 인트라 리프레쉬)

  • 금찬헌;최동환;황찬식
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.23-30
    • /
    • 2004
  • In MPEG-4 video, Motion Adaptive Intra Refresh (MAIR) encodes a motion area macroblock in intra mode, thereby preventing the error propagation. Motion area is selected by difference of between current macroblock and previous macroblock. An effective implementation of the AIR is to reduce the maximum refresh time and estimate the error prone macroblock. However in the case or the MAIR, unnecessary macroblock can be encoded in intra mode. in this paper, a bitrate AIR is proposed that reduces the maximum refresh time by estimating the error prone macroblock more efficiently.

An MPEG2-to-H.264 Transcoding Method (MPEG2에서 H.264로의 트랜스코딩 기법)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.706-715
    • /
    • 2005
  • In this paper, we present a transcoding algorithm for converting an MPEG-2 video bitstream to an H.264 bitstream. The proposed transcoder consists of two parts. One is MPEG2 decoding part and the other is H.264 encoding part Because our algorithm is for transcoding in the spatial domain, MPEG2 decoding part carries out full decoding of MPEG2 bitstream. While, because macroblock type and coded block pattern in MPEG2 are significantly related to macroblock mode in H.264, macroblock mode is selected adaptively according to macroblock type and coded block pattern in H.264 decoding part. Furthermore, motion vector is also used as side-information for 16$\ctimes$16 macroblock mode. Simulation results show that the proposed transcoder yields high reduction of total transcoding time at comparable PSNR.

An Adaptive Rate-Distortion Optimization Method for H.264 Video Codec (H.264를 위한 적응적인 비트-왜곡 최적화 방법)

  • Oh, Kwan-Jung;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • Several video coding standards, such as MPEG-4 and H.263, have been investigated to reduce the resulting number of bits while pursuing the maximum video quality. The recent video coding standard, H.264, provides higher coding efficiency than previous coding standards by using the mode decision scheme. For mode decision, H.264 chooses the best macroblock mode among the several candidates using Lagrangian cost function which reflects both the rate and the distortion. H.264 employs only one rate-distortion optimization (RDO) model for all macroblocks. Since the characteristics of each macroblock is different, each macroblock should have its own RDO model. In this paper, we propose an adaptive rate-distortion optimization algorithm for H.264. We regulate the Lagrangian multiplier considering the picture type and characteristics of each macroblock.

  • PDF

A Variable Quantization Coefficient Scanning for Macroblock Considering the Histogram Value of Previous Macroblock's Quantization Coefficient (이전 매크로블록의 양자화계수 누적값을 이용한 매크로블록 마다 가변적인 양자화계수 탐색방법)

  • Hyun, Myung-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.281-288
    • /
    • 2011
  • In this paper, a variable quantization coefficient scanning for macroblock considering the histogram value of previous macroblock's quantization coefficient is proposed. In order to scan a quantization coefficient, the proposed method makes $4{\times}4$ histograms for various prediction modes($16{\times}16$, $16{\times}8$, $8{\times}16$, $8{\times}8$) by adding 1 if the value of quantization coefficient is not 0. After a final mode decision procedure, the $4{\times}4$ histogram of the final mode will be sorted. Then, quantization coefficients in corresponding macroblock of the next frame are scanned using the sorted order. The experimental results show that the proposed scheme reduces the total bits by approximately 0.01~2.25% with similar PSNR performance compared with the previous method.

Fast Inter Mode Decision Algorithm Based on Macroblock Tracking in H.264/AVC Video

  • Kim, Byung-Gyu;Kim, Jong-Ho;Cho, Chang-Sik
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.736-744
    • /
    • 2007
  • We propose a fast macroblock (MB) mode prediction and decision algorithm based on temporal correlation for P-slices in the H.264/AVC video standard. There are eight block types for temporal decorrelation, including SKIP mode based on rate-distortion (RD) optimization. This scheme gives rise to exhaustive computations (search) in the coding procedure. To overcome this problem, a thresholding method for fast inter mode decision using a MB tracking scheme to find the most correlated block and RD cost of the correlated block is suggested for early stop of the inter mode determination. We propose a two-step inter mode candidate selection method using statistical analysis. In the first step, a mode is selected based on the mode information of the co-located MB from the previous frame. Then, an adaptive thresholding scheme is applied using the RD cost of the most correlated MB. Secondly, additional candidate modes are considered to determine the best mode of the initial candidate modes that does not satisfy the designed thresholding rule. Comparative analysis shows that a speed-up factor of up to 70.59% is obtained when compared with the full mode search method with a negligible bit increment and a minimal loss of image quality.

  • PDF

Fast Macroblock Mode Selection Algorithm for B Frames in Multiview Video Coding

  • Yu, Mei;He, Ping;Peng, Zongju;Zhang, Yun;Si, Yuehou;Jiang, Gangyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.408-427
    • /
    • 2011
  • Intensive computational complexity is an obstacle of enabling multiview video coding for real-time applications. In this paper, we present a fast macroblock (MB) mode selection algorithm for B frames which are based on the computational complexity analyses between the MB mode selection and reference frame selection. Three strategies are proposed to reduce the coding complexity jointly. First, the temporal correlation of MB modes between current MB and its temporal corresponding MBs is utilized to reduce computational complexity in determining the optimal MB mode. Secondly, Lagrangian cost of SKIP mode is compared with that of Inter $16{\times}16$ modes to early terminate the mode selection process. Thirdly, reference frame correlation among different Inter modes is exploited to reduce the number of reference frames. Experimental results show that the proposed algorithm can promote the encoding speed by 3.71~7.22 times with 0.08dB PSNR degradation and 2.03% bitrate increase on average compared with the joint multiview video model.

A Temporal Error Concealment Algorithm with Adaptive Block Size in the H.264/AVC Standard (H.264에서의 시방향(時方向) 에러은닉 기법)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.49-58
    • /
    • 2005
  • For the improvement of coding efficiency, the H.264 standard uses new coding tools. Using these coding tools, H.264 has achieved significant improvements from rate-distortion point of view. The adoption of these tools enables a macroblock in H.264 to have more information, sixteen motion vectors, four reference frames and a macroblock mode. In this paper, we present an efficient temporal error concealment algorithm by using not only motion vectors and reference frames but also macroblock mode of neighbor macroblocks. Our algorithm conceals the macroblock error with variable sizes, $16{\times}16,\;16{\times}8,\;8{\times}16,\;8{\times}8$ depending on the macroblock modes of neighbor macroblocks. Simulation results show that the proposed method increase the objective quality regardless of bit-rate and block error rate.

H.264의 FMO Performance Evaluation and Comparison over Packet-Lossy Networks (패킷 손실이 발생하는 네트워크 환경에서의 H.264의 FMO 성능분석과 비교에 관한 연구)

  • Kim Won-Jung;Lim Hye-Sook;Yim Chang-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5C
    • /
    • pp.490-496
    • /
    • 2006
  • H.264 is the most recent video coding standard, containing improved error resilience tools than previous video compression schemes. This paper shows an analysis of the dependency of error concealment (EC) performance on the expected number of correctly received neighboring macroblock(MB)s for a lost MB, applying error concealment schemes to the raster scan mode that is used in the previous video coding standard and the flexible macroblock ordering (FMO) which is one of error-resilience tools in H.264. We also present simulation results and performance evaluation with various packet loss rates. Simulation results show that the FMO mode provides better EC performances of $1{\sim}9dB$ PSNR improvements compared to the raster scan mode because of larger expected number of correctly received neighboring MBs. The PSNR improvement by FMO mode becomes higher as the intra-frame period is larger and the packet loss rate is higher.

H.264/AVC Fast Macroblock Mode Decision Algorithm (H.264/AVC 고속 매크로블록 모드 결정 알고리즘)

  • Kim, Ji-Woong;Kim, Yong-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.8-16
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264/AVC video coding standard employs new coding tools compared with existing coding standards. However, due to these new coding tools, the complexity of K264/AVC standard encoder is greatly increased. Specifically, the inter/intra mode decision method using RDO(rate-distortion optimization) technique is one of the most complex parts in H.264/AVC. In this paper, we focus on the complexity reduction in macroblock mode decision. In the proposed method, we reduce the complexity of the $4{\times}4$ mode decision process using $4{\times}4$ simple square filters, and using spatial block correlation method. Additionally, exploiting the best mode of sub_macroblock in $Inter8{\times}8$ mode, we proposed an algorithm to eliminate some intra modes in current macroblock mode decision process. In addition, we employed a method to raise the probability to select SKIP, $Intra16{\times}16$, and $Intra16{\times}16$ modes which usually show low complexity and low bitrate compared with other modes. From the simulation results, the proposed algorithm reduce the encoding time by maximum 83% of total, and reduce the bitrate of the overall sequences by $8{\sim}10%$ on the average compared with existing coding methods.

An Efficient Hardware Architecture of Intra Prediction and TQ/IQIT Module for H.264 Encoder

  • Suh, Ki-Bum;Park, Seong-Mo;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.511-524
    • /
    • 2005
  • In this paper, we propose a novel hardware architecture for an intra-prediction, integer transform, quantization, inverse integer transform, inverse quantization, and mode decision module for the macroblock engine of a new video coding standard, H.264. To reduce the cycle of intra prediction, transform/quantization, and inverse quantization/inverse transform of H.264, a reduction method for cycle overhead in the case of I16MB mode is proposed. This method can process one macroblock for 927 cycles for all cases of macroblock type by processing $4{\times}4$ Hadamard transform and quantization during $16{\times}16$ prediction. This module was designed using Verilog Hardware Description Language (HDL) and operates with a 54 MHz clock using the Hynix $0.35 {\mu}m$ TLM (triple layer metal) library.

  • PDF