• Title/Summary/Keyword: Macroblock Layer

Search Result 17, Processing Time 0.024 seconds

Model-based Macroblock Layer Rate Control for Low Bit Rate Video Coding (저전송률 비디오 압축을 위한 모델 기반 매크로블록 레이어 비트율 제어)

  • Park, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.50-57
    • /
    • 2009
  • This paper presents a new model-based macroblock layer rate control algorithm for low bit rate video coding which generates output bits corresponding to a target bit budget. The H.264 standard uses various coding modes and optimization methods to improve the compression performance, which makes it difficult to control the generated traffic accurately in low bit rate environments. In the proposed scheme, we first estimate MAD values of macroblocks in a frame and define a target remaining bits using the estimated MAD values before encoding each macroblock. If a difference between the target value and the actual value is greater than a threshold value, the quantization parameter is adjusted to decrease the difference. It is shown by experimental results that the new algorithm can obtain more than 66% decrease of the difference between the target bits and the resulting bits for a frame with the PSNR performance better than that of the existing rate control algorithm.

An Efficient Hardware Architecture of Intra Prediction and TQ/IQIT Module for H.264 Encoder

  • Suh, Ki-Bum;Park, Seong-Mo;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.511-524
    • /
    • 2005
  • In this paper, we propose a novel hardware architecture for an intra-prediction, integer transform, quantization, inverse integer transform, inverse quantization, and mode decision module for the macroblock engine of a new video coding standard, H.264. To reduce the cycle of intra prediction, transform/quantization, and inverse quantization/inverse transform of H.264, a reduction method for cycle overhead in the case of I16MB mode is proposed. This method can process one macroblock for 927 cycles for all cases of macroblock type by processing $4{\times}4$ Hadamard transform and quantization during $16{\times}16$ prediction. This module was designed using Verilog Hardware Description Language (HDL) and operates with a 54 MHz clock using the Hynix $0.35 {\mu}m$ TLM (triple layer metal) library.

  • PDF

Region-based H.263 Video Codec with Effective Rate Control Algorithm for Low VBR Video

  • Song, Hwangjun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9B
    • /
    • pp.1755-1766
    • /
    • 1999
  • A region-based video codec based on the H.263+ standard is examined and its associated novel rate control scheme is proposed in this work. The region-based coding scheme is a hybrid method that consists of the traditional block DCT coding and the object-based coding. Basically, we adopt H.263+ as the platform, and develop a fast macroblock-based segmentation method to implement the region-based video codec. The proposed rate control solution includes rate control in three levels: encoding frame selection, frame-layer rate control and macroblock-layer rate control. The goal is to enhance the visual quality of decoded frames at low bit rates. The efficiency of proposed rate control scheme applied to the region-based video codes is demonstrated via several typical test sequences.

  • PDF

Adaptive Macroblock Quantization Method for H.264 Codec (H.264 코덱을 위한 적응적 매크로블록 양자화 방법)

  • Park, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1193-1200
    • /
    • 2010
  • This paper presents a new adaptive macroblock quantization algorithm which generates the output bits corresponding to the target bit budget. The H.264 standard uses various coding modes and optimization methods to improve the compression performance, which makes it difficult to control the amount of the generated traffic accurately. In the proposed scheme, linear regression analysis is used to analyze the relationship between the bit rate of each macroblock and the quantization parameter and to predict the MAD values. Using the predicted values, the quantization parameter of each macroblock is determined by the Lagrange multiplier method and then modified according to the difference between the bit budget and the generated bits. It is shown by experimental results that the new algorithm can generate output bits accurately corresponding to the target bit rates.

Unequal Error Protection and Error Concealment Schemes for the Transmission of H.263 Video over Mobile Channels

  • Hong, Won-Gi;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents unequal error protection and error concealment techniques far robust H.263 video transmission over mobile channels. The proposed error protection scheme has three major features. First, it has the capability of preventing the loss of synchronization information in H.263 video stream as much as possible that the H.263 decoder can resynchronize at the next decoding point, if errors are occurred. Secondly, it employs an unequal error protection scheme to support variable coding rates using rate compatible punctured convolutional (RCPC) codes, dividing the encoded stream into two classes. Finally, a macroblock-interleaving scheme is employed in order to minimize the corruption of consecutive macroblocks due to burst errors, which can make a proper condition for error concealment. In addition, to minimize the spatial error propagations due to the variable length codes, a fast resynchronization scheme at the group of block layer is developed for recovering subsequent error-free macroblocks following the damaged macroblock. futhermore, error concealment techniques based on both side match criterion and overlapped block motion compensation (OBMC) are employed at the source decoder so that it can not only recover the lost macroblock more accurately, but also reduce blocking artifacts. Experimental results show that the proposed scheme can be an effective error protection scheme since proper video quality can be maintained under various channel bit error rates.

  • PDF

Adaptive Inter-Layer Prediction for Intra Texture on H.264 Scalable Video Coding (H.264 기반 스케일러블 비디오 부호화에서 인트라 블럭에 대한 적응적인 계층간 예측 연구)

  • Oh, Hyung-Suk;Park, Seong-Ho;Cheon, Min-Su;Kim, Won-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.195-197
    • /
    • 2005
  • In the scalable extension of H.264/AVC, spatial scalability is provided residual information as encoding layered spatial resolution between layers. We use the inter-layer prediction to remove this redundancy. In the inter-layer prediction, as the prediction we can use the signal that is the upsampled signal of the lower resolution layer. In this case, coding efficiency can be different from optimal prediction by kinds of interpolation filter. This paper indicates technique to choose the interpolation filter and to enhance coding efficiency for finding more correct prediction in intra macroblock.

  • PDF

Scalable Video Coding and its Application to AT-DMB (스케일러블 비디오 부호화와 AT-DMB)

  • Kim, Jae-Gon;Kim, Jin-Soo;Choi, Hae-Chul;Kang, Jung-Won
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.45-48
    • /
    • 2008
  • This paper presents a brief overview of scalable video coding (SVC) with a focus on spatial scalability and its application to Advanced Terrestrial-DMB (AT-DMB). By adopting SVC with two spatial-layers and hierarchical modulation, AT-DMB provides standard definition (SD)-level video while maintaining compatability with the existing CIF-level video. In this paper, we suggest a layer-configuration and coding parameters of SVC which are well suit for an AT-DMB system. In order to reduce extremely large encoding time resulted by an exhaustive search of a macroblock coding mode in spatial scalability, we propose a fast mode decision method which excludes redundant modes in each layer. It utilizes the mode distribution of each layer and their correlations. Experimental results show that a simplified encoding model with the method reduces the computational complexity significantly with negligible coding loss.

  • PDF

A Low Cmplexity Encoding Scheme for Coarse Granular Scalable Video Coding (스케일러블 비디오 부호화에서 CGS 화질 계위를 위한 저 복잡도 부호화 기법)

  • Lee, Bum-Shik;Kim, Mun-Churl;Hahm, Sang-Jin;Cho, In-Joon;Park, Chang-Seob
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.75-76
    • /
    • 2008
  • A low complexity encoding scheme for coarse grain scalability is proposed. The proposed method exploits the statistics of residuals between current and reference blocks using the macroblock mode predicted from the previous quality layer. To test how the mode is optimal in the current layer, the statistical hypothesis testing for the variances of the residual sub-blocks is performed. The proposed method reduces the total encoding time up to 51% when three CGS scalability layers are encoded. However, the quality degradation and bit-rate increment of the each layer are negligible.

  • PDF

A Macroblock-Layer Rate Control with Adaptive Quantization Parameter Decision and Header Bits Length Estimation (적응적 양자화 파라미터 결정과 헤더 비트량 예측을 통한 매크로블록 단위 비트율 제어)

  • Kim, Se-Ho;Suh, Jae-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.200-208
    • /
    • 2009
  • A macroblock layer rate control for H.264/AVC has the problem that allocated target bits for current frame occasionally are exhausted too fast due to inadequate quantization parameter assignment. In this case, the maximum permissible quantization parameter is used to encode for remaining macroblocks and it leads to degradation of the visual quality. In addition, the header bits length estimation algorithm used for quantization parameter assignment takes the average header bits length for the encoded macroblocks of the previous frame and the current frame. Therefore, it generates a big mismatch between the actually generated header bits length and the estimated header bits length. In this paper, we propose adaptive quantization parameter decision method to prevent early exhausting target bits during encoding the current frame by considering the number of macroblocks that have negative targets bits in previous frame and the improved header bits length estimation scheme for accurate quantization parameter decision.

A FAST INTRA PREDICTION MODE SELECTION METHOD IN H.264/AVC SCALABLE VIDEO CODING

  • Park, Sung-Jae;Lee, Yeo-Song;Sohn, Chae-Bong;Jeong, S.Y.;Chung, Kwang-Sue;Park, Ho-Chong;Ahn, Chang-Bum;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.170-173
    • /
    • 2009
  • In this paper, we propose a fast intra prediction mode selection method in Scalable Video Coding(SVC) which is an emerging video coding standard as an extension of H.264/Advanced Video Coding(H.264/AVC). The proposed method decides a candidate intra prediction mode based on the characteristic of macroblock smoothness. Statistical analysis is applied to computing that smoothness in spatial enhancement layer. We also propose an early termination scheme for Intra_BL mode decision where the RD cost value of Intra_BL is utilized. Compared with JSVM software, our scheme can reduce about 55% of the computation complexity of intra prediction on average, while the performance degradation is negligible; For low QP values, the average PSNR loss is very negligible, equivalently the bit rate increases by 0.01%. For high QP values, the average PSNR loss is less than 0.01dB, which equals to 0.25% increase in bitrate on average.

  • PDF