• 제목/요약/키워드: Machining temperature

검색결과 336건 처리시간 0.029초

내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석 (Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors)

  • 김석일;조재완
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.416-423
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/fin. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

  • PDF

내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석 (Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors)

  • 김석일;조재완
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.30-37
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/min. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

MQL 공급시스템을 이용한 플라스틱 금형강 가공 최적화에 관한 연구 (A Study on The Optimization of Plastic Mold Steel Machining Using MQL Supply System)

  • 홍광표;송기혁;이인철;강동성;정재화;임동욱;김운용;백시영
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.7-14
    • /
    • 2017
  • This study manufactured a minimum quantity lubrication (MQL) supply system and identified the optimal MQL machining cutting conditions for plastic mold steel (SCM440). A series of experiments were consisted of twice. Optimal cutting conditions were derived using the Taguchi method, and cutting force variance; surface roughness; tool wear; and cutting temperature in dry, wet, and MQL machining were measured experimentally for these optimal conditions. The measured results decreased from dry to wet and MQL machining, being particularly large for dry machining due to increased cutting time. Measured MQL machining metrics were similar to those for wet machining, particularly for surface roughness, which is an index of machining quality.

고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성 (Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine)

  • 윤한기;이상필
    • 한국해양공학회지
    • /
    • 제16권6호
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

스테인레스강 절삭가공에서 공구의 온도 특성에 대한 실험적 연구 (An Experimental Study of the Temperature Characteristics of a Cutting Tool in Machining of Stainless Steel)

  • 권용기
    • 한국생산제조학회지
    • /
    • 제5권1호
    • /
    • pp.9-16
    • /
    • 1996
  • This is an experimental investigation of the temperature generated in a cutting tool during the machining of stainless steel. The temperature results from the wear of the cutting tool are considered in order to investigate the relation between cause and effect of these factors. This possibility has been tested using a thermocouple technique to record temperature vs. time curves for a variety of cutting conditions. This is done by employing a thermocouple inserted on the tool tip near the major cutting edge. Temperature distributions are calculated using finite element method and compared to the contour maps measured by an optical system. It suggests that the temperature gradients and the tool performance will be dependent on certain facotrs in tool geometry when cutting this material.

  • PDF

유한요소해석에 의한 공구마모의 파괴역학적 모델링 연구 (Fracture-mechanical Modeling of Tool Wear by Finite Element Analysis)

  • 서욱환;이영섭
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.135-140
    • /
    • 2004
  • 마모구조는 대략적으로 기계, 화학 및 열적 마모 등으로 구분되어 진다. 평면변형 유한요소법이 지속적인 칩 형성을 갖는 대각선 가공을 시뮬레이션 하기 위하여 새로운 재료의 응력 및 온도 필드와 같이 사용되었다. 작업소재의 변형은 등방성 변형 경화를 갖는 탄성-점소으으로 취급되며, 수치해석의 해는 소성 변형과 온도 필드의 결합을 설명하며, 온도 종속적인 재료 물성치로 취급된다. 이 논문에서 개발된 모델에서는 전단영역 주위의 변형률, 응력 및 온도 분포에 대한 구성모델의 불확실성의 영향들을 보여주며 예측된 전단영역의 응력, 변형률 및 온도의 평균값들은 기존의 실험 치와 비교해서 잘 맞는 것으로 사료된다.

고속가공 시스템의 정밀도 평가방법에 관한 연구 (A Study on the Accuracy Evaluation Method of High Speed Machining)

  • 손덕수;이안호;이정길;이우영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.335-340
    • /
    • 2004
  • KS and ISO have proposed several evaluation methods of conventional machine tools. Even though the accuracy of the tools can be evaluated with those methods, there are still no proper evaluation methods of high speed machining. Because it is hard to evaluate characteristics of high speed machining such as decrease of cutting temperature, cutting force, and reduced machining time. Therefore, new evaluation method for high speed machine should be developed. In this paper, several shapes of model have been proposed to evaluate cutting accuracy of high speed machine.

  • PDF

Glassy Carbon의 초정밀 가공 (Ultraprecision Machining of Glassy Carbon)

  • 황연;이현성;김혜정;김정호
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.19-23
    • /
    • 2012
  • Glassy carbon is widely used for high temperature melting process such as quartz due to its thermal stability. For utilizing Classy Carbon to glass mold press(GMP) optical lens, brittleness of Glassy Carbon is main obstacle of ultraprecision machining. Thus authors investigated ductile machining of Glassy Carbon adopting turning and grinding process respectively. From the experiments, ultraprecision turning surfaces resulted brittle crack in all machining conditions and ultraprecision grinding surfaces showed semi-ductile mode in small undeformed chip thickness conditions.

마찰가공에 있어서의 분위기 영향에 관한 연구 제 1장

  • 손명완
    • 대한기계학회논문집
    • /
    • 제5권4호
    • /
    • pp.338-346
    • /
    • 1981
  • Honing, lapping, polishing and superfinishing are applied for a precision machining to finish the metal surface, but these precision machining are micro-cutting by hard and micro-abrasive grains. Frictional machining is the new method to finish mirrorlike surface without using those abrasive grains. The frictional machining produces high pressure and high temperature instantly by compressing a tool material against the metal surface in sliding motion. The metal surface is given plastic deformation and plastic flow by the above mentioned frictional motion, but the surface roughness of the metal surface is influenced by physical and chemical reaction in surrounding atmosphere. Therefore, the atmosphere around the metal optimum atmosphere in the frictional machining. The part 1 of the study was performed in liquid atmospheres. Diesel oil, lubricant, grease, lard oil, bean oil and cutting fluid were used as such atmospheres. Medium carbon steel SM 50 C was used as a workpiece and ceramic tip was applied as a frictional tool. The result of the experiment showed characteristic machining conditions to generate the best surface roughness in each atmospheres.

공압식 소재물림 가이드부쉬 시스템의 설계 및 가공정도 평가 (Design and Machining Precision Evaluation of Pneumatic Clamping Type Guide-bush System)

  • 이재훈;이수민;박성훈;이시복
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.859-866
    • /
    • 2010
  • Generally, a fixed type guide-bush system is installed during machining miniature work-pieces with high precision in the multi-task CNC lathe. But a conventional guide-bush system does not provide a constant clamping force under the condition of varying work-piece diameters. It is important to maintain a constant clamping force for guaranteeing machining precision. This paper proposes a new guide-bush system with a pneumatic clamping device for the CNC Swiss-turn lathe to keep constant clamping force with changes in work-piece diameters. Through performance tests, new clamping system developed in the study showed better machining precision at the cost of a small increase in the temperature of the system than conventional systems due to an increase in the frictional heat and a change in the heat transfer route.