• Title/Summary/Keyword: Machining temperature

Search Result 336, Processing Time 0.027 seconds

Analysis of Moving Heat Source for Laser Assisted Machining of Plate by Feed Rate Control (이송속도 조절에 의한 평판 레이저 보조가공의 이동 열원해석)

  • Kim, Kwang-Sun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.12
    • /
    • pp.1341-1346
    • /
    • 2011
  • Currently, many researches are carried out for laser assisted machining, which is one of the important fields in materials difficult to process. However, a prediction of heat source is difficult because of moving heat source. In this paper, a thermal analysis of laser assisted machining of plate by change of heat source size is performed, and preheating temperature by adjusting the feed rate is controlled. It was recognized that the maximum preheating temperature increases according to the decrease in heat source size, and feed rate need to adjust as high speed. The results of this analysis can be used as a reference for preheating temperature prediction in laser assisted milling.

Analysis of Thermal Distribution and Compensation of Error for Spindle of Machining Center (공작기계 스핀들 부위의 열분포 분석 및 오차 보정)

  • Ko, H.S.;Park, K.H.;Seo, H.R.;Ha, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1352-1357
    • /
    • 2004
  • Thermal error compensation has been developed for CNC (Computer Numerical Control) machining center with moving heat sources. The thermal error in CNC machining center has an effect on machining accuracy more than the geometric error does. Thus, temperature distributions of a spindle unit have been analyzed numerically by a Finite Differential Method and experimentally by an infrared (IR) camera in this study. A multiple variable method has been derived to estimate the thermal deformation of the machine origin stably and effectively after measuring deformation and temperature data. The experimental results for a vertical machining center have shown that the thermal errors of the machine origins were reduced more than 30% by the developed method.

  • PDF

Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium (티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석)

  • Jeong Sik Han;Jong Yun Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (I) - Preheating Characteristics and Oxidation Behaviors of Silicon Nitride Ceramics with Machining Parameters - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (I) - 공정변수에 따른 질화규소의 예열특성 및 산화거동 -)

  • Kim, Jong-Do;Lee, Su-Jin;Shu, Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.61-66
    • /
    • 2010
  • Silicon nitride is widely used as an engineering ceramics because it has high strength, abrasion resistance and corrosion resistance even at high temperature. However, machining of silicon nitride is difficult due to its high hardness and brittleness. Laser assisted machining(LAM) allows effective cutting using CBN tool by locally heating the cutting part to the softening temperature of YSiAlON using the laser beam. The effect of preheating depending on process parameters were studied to find out the oxidation mechanism. If silicon nitride is sufficiently preheated, the surface is oxidized and $N_2$ gas is formed and escapes from the material, thereby making the cutting process more advantageous. During laser preheating process before machining, high temperature results in strong oxidation which makes the bloating, silicate layers and micro cracks. Using the results of these experiments, preheating characteristics and oxidation behavior were found out.

Optimization of high-speed machining process using constrained R-T characteristic curve (절삭률-공구수명 특성 곡선을 이용한 고속가공 공정의 최적화에 관한 연구)

  • 최용철;김동우;장윤상;조명우;허영무
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.100-105
    • /
    • 2003
  • With the recent development of machining technology, high speed machining process is widely used for-the mold and difficult-to -cut-materials machining since it allows achieving high productivity and surface quality. However, during the high speed machining process, high cutting speed and feed rate can cause abrupt tool life decrease due to rapid rising of the cutting tool temperature. Such situation may cause increase of machining cost. Thus, in this study, developed optimization algorithm is applied to determine optimal machining variables for multiple high speed machining. The R-T characteristic curve for machining economics problems with a linear-lorarithmic tool life model is determined by applying sensitivity analysis. finally, a series of high speed machining experiments are performed to determine the desired optimal machining variables, and the results are analyzed.

  • PDF

A study on Finite Element Analysis of Tool Deformation in End Milling (엔드밀 가공에서의 공구 변형에 대한 유한요소해석)

  • Kim Kug Weon;Jung Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.83-86
    • /
    • 2005
  • This study is predicted tool deformation by cutting forces and chip-tool interface temperature in machining process. Modeling of tool is made using 3D CAD software, finite element method is performed by cutting forces and temperature. Cutting forces and temperature used load conditions are predicted using the cutting force model based on machining theory. Experimental milling tests have been conducted to verify the cutting force model. Finally, this study is predicted cutting force components and temperature using cutting conditions, material property, tool geometry without experiment and tool deformation is predicted by cutting forces and temperature in machining process.

  • PDF

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Presintering Temperature for Improving the Tool Life in Machining of $Si_3N_4$ Ceramics ($Si_3N_4$ 세라믹의 가공성을 고려한 예비소결온도 선정)

  • Lee Jae-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.456-459
    • /
    • 2005
  • The setting of a presintering temperature is carried out on the basis of the Vickers hardness of the presintered compact in the method for producing a ceramic sintered compact comprising presintering a formed compact composed of a ceramic powder and a sintering assistant, then machining the presintering compact and subsequently sintering the machined compact. The Presintering temperature is preferably set at a temperature so as to provide 213-230 Hv Vickers hardness of the compact for presintering. Furthermore, the presintering temperature is preferably within the range of 1,300-1,450$^{\circ}C$.

  • PDF

Characteristics of tool wear and cutting temperature in machining of SUS 304 (SUS 304 절삭시 공구마모와 절삭온도의 특성)

  • Kwon, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.71-79
    • /
    • 1994
  • The aim of this study is to analyze the behavier of SUS 304 during the cutting process and the resulting cutting temperaturce. Since SUS 304 is a difficult-to-machine material, tool damage is largely affected by the suitability of cutting conditions. Therefore, in varying such cutting conditions, the experiment investigates the relations between cutting temperature and tool wear during the cutting process. All the cutting temperature data were manipulated successfully, and the tool temperature distributions were analyzed by a finite element method based on the acquisition data. In the results, the characteristics of cutting temperature are related to the difficulty of machining characteristics.

  • PDF

Evaluation of Cutting force and Surface accuracy on Drilling process by Temperature variation (온도 변화에 따른 드릴가공의 절삭력 변화와 가공정밀도 평가)

  • 이상천;정우섭;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.895-898
    • /
    • 1997
  • These days, most of new materials, which is in use widely as cutting process materials have a characteristic in common. That is hard cutting. So, it happens that hardness by cutting temperature. And hardness on cutting process has an effect on tool wear or life shortness of tools. To solve these problems hot-machining is proposed. When a material is heated, organization of material is soften. So cutting process becomes easy. When such a hot-machining method applies on drilling process and then heated material is processed, cutting force is less than usual drilling process cutting force. In this paper, when a material is heated, cutting force on drilling process is measured. It is decided that the best suitable temperature area. And it suggest that the better hot-machining condition as surface accuracy is measured.

  • PDF