• Title/Summary/Keyword: Machining system

Search Result 1,494, Processing Time 0.024 seconds

Experimental study on the damping characteristics of a cylindrical structure containing oil and bearing balls (윤활유와 베어링 볼을 내장한 원통형 구조물의 감쇠특성에 관한 실험적 연구)

  • 류봉조;송선호
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.107-114
    • /
    • 1996
  • The damping characteristics of a cylindrical structure containing oil and bearing balls is investigated for external bending forces. The experimental data obtained through the use of bearing balls with viscous oil in a column is given and analyzed. The viscous action of the oil and inertia effects of the balls on the inside of column create a drag force. The drag force dampens the vibration of the column. This study aims to search for an optimum combination of oil and balls which would produce maximum damping. Machining oils of various viscosities along with ball bearings of various sizes place inside cantilevered aluminium tubes of various diameters to create a rig on which the damping properties of the oil and balls can be studied. The contileved tubes are studied in both horizontal and vertical positions in order to gauge the effect of gravity on the system. The actions of the ball in the column and damping characteristics are investigated according to the dimensionless terms. The Buckingham theorem is used to reduce the variables and to predict the damping of an oil ball column. Though the damping ratio remains fairly constant in the horizontal position of column, the damping ratio begins to increase as the ratio of the number of balls and column length rise above 0.28 in the vertical position of oil ball column. The ratio of the ball diameter to column diameter influences the damping ratio with an optimum diameter ratio. Slenderness ratio and gravity effects on the damping ratio ane investigated.

  • PDF

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.

A Study on Stress and Deformation through Finite Element Analysis of 2NC Head Processing Controlling AC Axis during 5-Axis Cutting Machine Training in the 4th Industrial Revolution of Machine Tool System (공작기계의 4차 산업혁명에서 5축 절삭가공기 교육 중 AC축을 제어하는 2NC 헤드 가공상의 유한요소 해석으로 응력 및 변형에 관한 연구)

  • Lee, Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.13 no.2
    • /
    • pp.327-332
    • /
    • 2021
  • Materials used for education include SM20C, Al6061, and acrylic. SM20C materials are used a lot in certification tests and functional competitions as carbon steel, but they are also used in industrial sites. Al6061 is said to be a material that produces a lot of tools because it has lower hardness than carbon steel and is highly flexible. When practical guidance is given to students using acrylic materials, it is a material that causes vibration and tool damage due to excessive cutting. In this process, we examine how impact on the 5-axis equipment 2NC head can affect precision control. The weakest part of a five-axis equipment is the head that controls the AC axis. In the event of precision and cumulative tolerances in this area, the precision of all products is reduced. Thus, a key part of the 2NC head, the spindle housing was carried out using Al7075 T6 (U.S. Alcoasa) material and the entire body using FCD450 (spherical graphite cast iron). In the vibration and cutting process acting on these two materials, the analysis was carried out to determine the value of applying the force as a finite element analysis under extreme conditions. We hope that using these analytical data will help students see and understand the structure of 5-axis machining rather than 5-axis cutting.

Effect of milling tool wear on the internal fit of PMMA implant interim prosthesis (밀링 공구의 마모가 PMMA 임플란트 임시보철물 변연 및 내면적합도에 미치는 영향)

  • Shin, Mi-sun
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the effect of CAD/CAM system milling tool wear on the marginal and internal fit of PMMA implant interim prosthesis three-dimensional manner. Methods: A total of 20 crowns were fabricated with CAD/CAM method. Their designs were unified to first molar of the left maxilla. The Customized abutments were prepared and scanned with on optical model scanner. Five crowns were milled by the newly replaced tool (1st milling), and 15 crowns were milled by 2nd, 3rd, 4th milling tool. The marginal and internal fit of 20 interim crowns were measured using the triple-scan protocol. Results: Statistically significant difference was found between the $1^{st}$ milling group ($51.8{\pm}14.6{\mu}m$) and the $3^{rd}$, $4^{th}$ milling group ($128.6{\pm}43.8{\mu}m$, $146.2{\pm}38.1{\mu}m$, respectively) at the distal margins. In the mesial margins, There was a statistically significant difference between the $1^{st}$ milling group ($63.6{\pm}25.9{\mu}m$) and the $3^{rd}$, $4^{th}$ milling group ($137.2{\pm}25.9{\mu}m$, $186.8{\pm}70.6{\mu}m$, respectively). In the distal line angle, significant difference was found between the $1^{st}$, $2^{nd}$, $3^{rd}$ milling groups and the $4^{th}$ milling group. In the mesial axial wall, significant difference was found between the $1^{st}$ milling group ($52.2{\pm}20.3{\mu}m$) and the $3^{rd}$, $4^{th}$ milling groups ($22.8{\pm}8.8{\mu}m$, $7.8{\pm}5.7{\mu}m$). Conclusion: As a result of the experiment, decrease of the marginal and internal fit was statistically significant as the number of machining cycles increased. In order to produce clinically excellent restorations, it is recommandable to consider the condition of the milling tool wear, when designing the restoration with CAD program.