• Title/Summary/Keyword: Machining speed

Search Result 979, Processing Time 0.024 seconds

A Study on the Machining Characteristics of Prototype of Roller Gear Cams (롤러 기어 캠의 시제품 가공특성에 관한 연구)

  • Kim, Jin-Su;Kang, Seong-Ki;Lee, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.60-67
    • /
    • 2012
  • In the study, the effect grinding condition on the workpiece arithmetical average roughness(Ra) to 10 steps leading to cutting each section with the spindle rotational speed 8000rpm and feed rate 150mm/min of grinding in GC(green silicon carbide) grinding processing after heat treatment and non heat treatment of SCM415 material. Also the following conclusions were obtained analysis of stress distribution displacement and finite elements method(FEM) on assemble parts with 3+2 axis simultaneous control through grinding and gave a load 11kg on ATC arm both sides gave a load of 11kg. For the centerline average roughness(Ra) in the heat and non-heat treatment work pieces, which were appeared the most favorable in the fifth section were $0.511{\mu}m$ and $0.514{\mu}m$, that were shown in the near the straight line section was the smallest deformation of curve. In addition, the bad surface roughness appeared on the path is too long by changing angle, the more inclined depth of cut, because the chip discharging is not smoothly.

A Study on Accelerated Life Test of Hypoid Gear Rotary Reducer (하이포이드 회전감속기의 가속 수명시험 방법에 관한 연구)

  • Yoon, Sang-hwan;Beak, Kwon-in;Kim, Heonkeong;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.63-68
    • /
    • 2017
  • In order to process more complicated and higher-precision parts, generally, an additional axis for a machine tool is needed which was an approach to minimize the cost of tool modification. A table with a rotary reducer that can rotate through the axis of the gear system was employed to a machine tool to achieve the purpose of adding an extra motion axis. In general, the motion of the rotary reducer is driven by a worm/wheel or helical gear system, which is different from the hypoid helical gear structure that used in this research. Reliability of guarantee of high accurancy throughout the whole life cycle is on of the critical factors to evaluate a rotary reducer in this field. In this paper, in order to evaluate life-time of rotary reducer, a low-cost accelerated life test was developed to satisfy the demands of clients.

Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments (실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가)

  • Sim, Jongwoo;Choi, Dae Cheol;Shin, Ki-Hoon;Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

Characterization of TiAlN Coated Layer with Heat Treatment Prepared by R.F Magnetron Sputtering (R.F magnetron sputtering법으로 제조된 TiAlN 코팅 층의 열처리 특성)

  • Song, Dong Hwan;Yang, Gwon Seung;Lee, Jong Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.4
    • /
    • pp.225-229
    • /
    • 2006
  • TiAlN coatings are available in various industry fields as a wear resistant coating for high-speed machining, due to its high hardness, excellent oxidation and corrosion resistance. The corrosion resistance of TiAlN multilayer coatings is better than that of single TiN coatings. Most of TiAlN coated layers were formed by heat treatment of coating layers with a non-stoichiometric $Ti_xAl_{1-x}N$. In this study, TiAlN coated layer was prepared by R.F magnetron sputtering and investigated the thermal behavior for heat treatment at various temperature in tube furnace. The formation of large particles with porous microstructure and phase change from HCP to FCC were observed on coated layer during heat treatment over $850^{\circ}C$ and it reduced the corrosion resistance of coated TiAlN layers.

Analysis of Chip Thickness Model in Ball-end Milling (볼엔드밀 가공의 칩두께 모델 해석)

  • Sim Ki-Joung;Mun Sang-Don
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.73-80
    • /
    • 2006
  • This paper describes a analysis on the chip thickness model required for cutting force simulation in ball-end milling. In milling, cutting forces are obtained by multiplying chip area to specific cutting forces in each cutting instance. Specific cutting forces are one of the important factors for cutting force predication and have unique value according to workpiece materials. Chip area in two dimensional cutting is simply calculated using depth of cut and feed, but not simply obtained in three dimensional cutting such as milling due to complex cutting mechanics. In ball-end milling, machining is almost performed in the ball part of the cutter and tool radius is varied along contact point of the cutter and workpiece. In result, the cutting speed and the effective helix angle are changed according to length from the tool tip. In this study, for chip thickness model analysis, tool and chip geometry are analyzed and then the definition of chip thickness and estimation method are described. The resulted of analysis are verified by compared with geometrical simulation and other research. The proposed chip thickness model is more precise.

A Study on the Wear Estimation of End Mill Using Sound Frequency Analysis (음향주파수 분석에 의한 엔드밀의 마모상태 추정에 관한 연구)

  • Lee, Chang-Hee;Cho, Taik-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1287-1294
    • /
    • 2003
  • The wear process of end mill is so complicated process that a more reliable technique is required for the monitoring and controlling the tool life and its performance. This research presents a new tool wear monitoring method based on the sound signal generated on the machining. The experiment carried out continuous-side-milling for 4 cases using the high-speed-steel end mill under wet condition. The sound pressure was measured at 0.5m from the cutting zone by a dynamic microphone, and was analyzed at frequency domain. As the cutter impacts the workpiece surface, a situation of farced vibration arises in which the dominant forcing frequency is equal to the tooth passing frequency of the cutter. The tooth passing frequency appears as a harmonics form, and end mill flank wear is related with the first harmonic. It is possible to detect end . mill flank wear. This paper proposed the new method of the end mill wear detection.

Slope Change of Surface Texturing Pattern Using Grinding (연삭을 이용한 Surface Texturing에서 패턴의 기울기 변화)

  • Jeong, Ji-Yong;Zhen, Yu;Ullah, Sahar M. Sana;Ko, TaeJo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.8-15
    • /
    • 2016
  • Most machines lose a lot of energy due to friction. Wear due to friction also reduces performance. Therefore, it is important to reduce friction on the surface to improve energy efficiency and decrease wear. Surface texturing refers to making patterns on the surface for reducing friction. There are many surface texturing methods, such as using lasers, abrasive jet machining, and so on. Recently, mechanical manufacturing methods, such as cutting and grinding, have been highlighted. Among them, the grinding method has the advantage of making patterns in large areas quickly. Therefore, it is appropriate for surface texturing on large machines. This paper is a study on the slope change of the surface texturing pattern using grinding. Therefore, we researched the slopes of the patterns corresponding to "spindle speed and feed rate" and "curvature of workpiece surface" using a mathematical model and experiment. As a result, we made a proper mathematical model concerning our research. Therefore, using the mathematical model in this paper, we could predict the slope change of the pattern according to grinding conditions.

Development of an Optimal Cutting Condition Decision System by Neural Network (신경망을 이용한 최적절삭조건부여 시스템 개발)

  • Yang, Min-Yang;Kim, Hyun-Chul;Byun, Cheol-Woong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.111-117
    • /
    • 2002
  • In most machining companies, operators decide the cutting condition, a pair of spindle speed (5) and table federate (F) by experience and subjective judgment. As cutting conditions are determined by operators' experience and ability, inconsistent cutting conditions are given in same operating conditions. The objective of this study is to develop the cutting condition decision system which utilizes shop data and predicts tool life by neural network and eventually leads to the optimal cutting condition. The production time per piece is considered for an optimization object. We will discuss the process of an optimal cutting condition decision by neural network. By this process, a series of shop data is stored. And neural network is constructed for prediction of tool life and the optimal cutting condition is recommended from a cutting condition decision system using the stored shop data. The results show that the developed system is rational in searching the optimal cutting conditions on job operations.

A Study on Shape Optimization of High-Speed Index Table with Hypoid Gear (하이포이드기어 내장형 고속 인덱스 테이블의 형상최적화에 관한 연구)

  • Lee, Choon Man;Ahn, Jong Wook;Kim, Dong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.179-184
    • /
    • 2015
  • In the recent field of Machining, with the improving efficiency of processing, the index table is a key unit according to the increase of parts in available processing when working with the three axes at the same time. As an essential product of MCT, the index tables effect an influence on product quality of machined parts. Therefore, it is necessary to design the shape of index table with stability, high stiffness, lightweight structure. In this study, the optimal shape of index table was proposed using by design of experiment. The maximum displacement and stress analysis were carried out by using FEM software. The optimized shape was verified by using the statistical software. The results of shape optimization were confirmed that both displacement and stress were reduced in comparison with initial model.

A Study on the Improvement of Physical Properties for Titanium Alloy by the Grinding Conditions (연삭가공조건에 따른 티타늄 합금의 물성치 향상에 관한 연구)

  • Kim, Won Il;Lee, Yun Kyung;Wang, Duck Hyun;Heo, Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.237-242
    • /
    • 2001
  • Ti-6Al-4V alloy can be obtained the stability of organization and product treasure, the evaluation of the cutting ability and the mechanical characteristics after the heat treatment of annealing, solution and aging. The difficulty in machining titanium alloy is how treat the heat generated during the process. Because the heat conductivity of titanium alloy is regardfully low, the heat generated during grinding is accumulated in workpiece. and it causes the increasing of grinding wheel grits' wear and makes the ground surface rough. So, these characteristics in grinding of titanium alloy will change the mechanical properties of the titanium alloy. From this study. the mechanical characteristics of annealed one and solution and aging one treated Ti-6Al-4V alloy after grinding was concerned with checking out the bending strength and hardness. For the result, both of bending strength and hardness were increased at the burned area on the surface. Roughness value was remarkably high at the table speed of 10m/min.

  • PDF