• Title/Summary/Keyword: Machining speed

Search Result 979, Processing Time 0.026 seconds

A STUDY ON THE SPEED CONTROL OF AC SERVO MOTOR BY TIME CONSTANT

  • Kim, Pyoung-Ho;Park, In-June;Baek, Hyung-Lae;Chung, Byung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.325-329
    • /
    • 1998
  • This paper describes the controller for the improving speed control of the AC servo motor. The microprocessor provides an output to the difference in command. the servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal of the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant of linear acceleration/deceleration. We can know that optimal speed of machining center is 75msec in 30000mm/min and actually, 75msec is using on machining center. Finally experimental results prove excellent performance of this control system. This can be reduced error with more exact measure of actual speed. The system can be adaptable to CNC machine.

  • PDF

Control Characteristics of Speed Using Time Constant on the AC Servo Motor (교류서보모터의 시정수에 의한 속도 제어특성)

  • 김평호;박인준;정병호;오금곤;백형래
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.347-351
    • /
    • 1998
  • This paper describes the controller for the improving speed control the AC servo motor. The microprocessor provides an output to the difference in command. The servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal of the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant. We can know that optimal speed of machining center is 75msec in 30000mm/min and actually, 75msec is using on machining center. Finally experimental results prove excellent performance of this control system. This can be reduced error with more exact measure of actual speed. The system can be adaptable to CNC machine.

  • PDF

Effects of the Grinding Conditions on the Shape of Center Ground Parts

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • The form accuracy of parts has become an important parameter. Therefore, not only dimensional tolerance but also geometric tolerances are used in the design stage to satisfy the required quality and functions of parts. But the information on the machining conditions, which can satisfy the assigned geometric tolerance in do sign, is insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among them The results are as follows; The effects of work speed and depth of cut on the workpiece shape are negligible compared with the effect of traverse speed. These is an optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing as the traverse speed is increasing.

A Study on the Vibration Parameters for High Speed Face Milling Machining (고속 정면밀링가공을 위한 진동 파라미터에 관한 연구)

  • Jang, Sung-Min;Lee, Seung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4149-4155
    • /
    • 2013
  • High speed machining for higher cutting speed and feedrate lead to a increase of surface quality and material removal rate. This paper presents a study of the influence of cutting conditions on the vibration characteristics obtained by machining with face milling cutter for high speed machining. In this paper, Taguchi experimental design method which is based on orthogonal array table was applied to study vibration characteristics with high speed face milling cutter. The experimental conditions used orthogonal array of $L_{27}(3^{13})$. In this work, design and analysis of experiments is conducted to study the effects of these parameters on the vibration by using the S/N ratio, analysis of variance. Four cutting parameters namely, feed rate, champer length, cutting speed, and depth of cut were optimized with consideration of vibration characteristics.

Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed (Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구)

  • 서정도;이대길;김태형;박보선;최원선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF

Development of Automatic Filling Process for Rapid Manufacturing by High-speed Machining Process (고속가공에 의한 쾌속제작용 자동충진 공정개발)

  • 신보성;양동열;최두선;이응숙;제태진;김기돈;이종현;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.28-31
    • /
    • 2001
  • Recently, in order to satisfy the consumer's demand the life cycle and the lead-time of a product is to be shortened. It is thus important to reduce the time and cost in manufacturing trial products. Several techniques have been developed and successfully commercialized in the market RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome this problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP process. HisRP is a combination process using high-speed machining technology with automatic filling. In filling process, Bi58-Sn alloy is chosen because of the properties of los-melting point, low coefficient of thermal expansion and enviromental friendship. Also the use of filling wire is of advantage in term of simple and flexible mechanism. Then the rapid manufacturing product, for example a skull, is machined for aluminum material by HisRP process with an automatic set-up device of 4-faces machining.

  • PDF

Development of Automatic Filling Process using Low-Melting Point Metal for Rapid Manufacturing with Machining Process (절삭가공과 저융점금속에 의한 쾌속제작용 자동충진공정 개발)

  • Shin, Bo-Seong;Yang, Dong-Yeol;Choi, Du-Seon;Kim, Ki-Don;Lee, Eung-Suk;Je, Tae-Jin;Hwang, Kyeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.88-94
    • /
    • 2002
  • Recently, the life cycle and the lead-time of a product are to be shortened in order to satisfy consumer's demand. It is thus important to reduce the time and cost in manufacturing trial products. Several technique have been developed and successfully commercialized in the market of RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome these problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP(High-Speed RP) process. HisRP is a new RP process that is combined high-speed machining with automatic filling. In filling process, Bi58-Sn alloy is chosen as filling material because of the properties of low-melting point, low coefficient of thermal expansion and no harm to environment. Also the use of filling wire it if advantage since it needs simple and flexible mechanism. Then the rapid product, for example a skull, is manufactured for aluminum material by HisRP process with an automatic set-up device thor 4-faces machining.

ADL Milling Characteristics for the Analysis of Cutting Force of Titanium Machining (티타늄 가공에서 절삭력 분석을 위한 ADL 밀링 가공특성)

  • Han, Jeong Sik;Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.104-114
    • /
    • 2022
  • The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.

Thermal Characteristic Analysis of a High-Speed Horizontal Machining Center with Built-in Motor and Linear Motors (내장형 모터와 리니어 모터를 적용한 초고속 수평형 머시닝센터의 열 특성 해석)

  • 김석일;조재완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.416-423
    • /
    • 2004
  • This paper presents the thermal characteristic analysis of a high-speed horizontal machining center with spindle speed of 50,000rpm and feedrate of 120m/fin. The spindle system is designed based on the built-in motor, angular contact ceramic ball bearings, oil-air lubrication and oil-jacket cooling method. The X-axis and Y-axis feeding systems are composed of the linear motors and linear motion guides, and the Z-axis feeding system is composed of the servo-motor, ball screw and linear motion guides. The thermal characteristics such as the temperature distribution, temperature rise, thermal deformation and step response, are estimated based on the finite element model of machining center and the heat generation rates of heat sources related to the machine operation conditions. Especially, the thermal time constant assessed from the step response function is introduced as an index of thermal response characteristics.

  • PDF