• Title/Summary/Keyword: Machining sequence

Search Result 59, Processing Time 0.071 seconds

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • v.23
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

A Method of Eliminating Exceptional Elements Attaining Minimum Machine Duplications and Intercell Moves In Cellular Manufacturing Systems (기계중복과 셀간 이동수의 최소화가 가능한 예외적 요소의 제거 방법 : 비용 및 설치대수 제약 고려)

  • Jang, Ik;Yun, Chang-Won;Chung, Byung-Hee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.87-96
    • /
    • 1998
  • Using the concept of cellular manufacturing systems(CMS) in job shop manufacturing system is one of the most innovative approaches to improving plant productivity. However. several constraints in machine duplication cost, machining capability, cell space capacity, intercell moves and exceptional elements(EEs) are main problems that prevent achieving the goal of maintaining an ideal CMS environment. Minimizing intercell part traffics and EEs are the main objective of the cell formation problem because it is a critical point that improving production efficiency. Because the intercell moves could be changed according to the sequence of operation, it should be considered in assigning parts and machines to machine ceil. This paper presents a method that eliminates EEs under the constraints of machine duplication cost and ceil space capacity attaining two goals of minimizing machine duplications and minimizing intercell moves simultaneously. Developing an algorithm that calculates the machine duplications by cell-machine incidence matrix and part-machine Incidence matrix, and calculates the exact intercell moves considering the sequence of operation. Based on the number of machine duplications and exact intercell moves, the goal programming model which satisfying minimum machine duplications and minimum intercell moves is developed. A linear programming model is suggested that could calculates more effectively without damaging optimal solution. A numerical example is provided to illustrate these methods.

  • PDF

A Method of Eliminating Exceptional Elements Attainting Minimum Machine Duplications and Intercell Moves In Cell Manufacturing Systems (기계중복과 셀간 이동수의 최소화가 가능한 예외적 요소의 제거 방법 : 비용 및 설치대수 제약 고려)

  • Chang, Ik;Yoon, Chang-Won;Chung, Byeong-Hui
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.263-266
    • /
    • 1998
  • Several constraints in machine duplication cost, machining capability, cell space capacity, intercell moves and exceptional elements(EEs) are main problems that prevent achieving the goal of ideal Cellular Manufacturin System (CMS) environment. Minimizing intercell part traffics and EEs are the main objective of the cell formation problem as it's a critical point that improving production efficiency. Because the intercell moves could be changed according to the sequence of operation, it should be considered in assigning parts and machines to machine cells. This paper presents a method that eliminates EEs under the constraints of machine duplication cost and cell space capacity attaining two goals of minimizing machine duplications and minimizing intercell moves simultaneously. Developing an algorithm that calculates the machine duplications by cell-machine incidence matrix and part-machine incidence matrix, and calculates the exact intercell moves considering the sequence of operation. Based on the number of machine duplications and exact intercell moves, the goal programming model which satisfying minimum machine duplications and minimum intercell moves is developed. A linear programming model is suggested that could calculates more effectively without damaging optimal solution. A numerical example is provided to illustrate these methods.

  • PDF

Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage (2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

A Study on the Optimization of Servo System Originating to High-Speed Fixed Duty Processing (고속 고정도가공에 기인하는 Servo System의 최적화와 기능특성에 관한 연구)

  • Lee, Hong-Gil;Kim, Won-il;Choi, Myung-Hwan;Baek, Sang-Yeob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.18-24
    • /
    • 2009
  • The most dominate aspect in machine works using CNC devices in industrial production processes is the precision of the product and the Cycle Time. To this day, many studies on the external factors of the technology to reduce the Cycle Time have advanced amid to the advancements in cam soft development for manual programs and the numerous studies on high speed and precision machining. This study experimented various functions of the sequence pattern flow and arranged system development technologies of past few years to develop and applicate various usage of adjustment factors within the CNC, so it would be more understandable to the user and would enable them to make high speed and precision products more faster develop and. In order to reduce the Cycle Time, the mechanism of machine tools has to be analysed and applied, in addition to program reduction and improvement of the manufacture process.

  • PDF

Cutting Simulation of Mold & Die via Hybrid Model of DVM and Z-Map (DVM 및 Z-Map 복합모델을 이용한 금형의 모의가공)

  • 신양호;박정환;정연찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • Geometric cutting-simulation and verification play an important role in detecting NC machining errors in mold & die manufacturing and thereby reducing correcting time & cost on the shop floor. Current researches in the area may be categorized into view-based, solid-based, and discrete vector-based methods mainly depending on workpiece models. Each methodology has its own strengths and weaknesses in terms of computing speed, representation accuracy, and its ability of numerical inspection. The paper proposes a hybrid modeling scheme for workpiece representation with z-map model and discrete vector model, which performs 3-axis and 5-axis cutting-simulation via tool swept surface construction by connecting a sequence of silhouette curves.

Development of an Analytic Surface Measurement Module for OMM System (기상측정 시스템을 위한 일반형상 측정 모듈 개발)

  • 조승현;이승용;조명우;권혁동;김문기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.239-242
    • /
    • 2000
  • The purpose of this paper is to establish an effective inspection system by using OMM(ON-Machine Measurement) system. This allows us to reduce the manufacturing lead time by separating the inspection process from manufacturing system. As a first step, the inspection process planning is accomplished by determining the number of measuring points, their locations, measuring path and their sequence. Subsequently, we generate measuring G-codes to be transferred to the machining center through RS232C, and then the inspection process will be performed for each shape. Analysing obtained measuring data, the dimensional tolerance will be validated.

  • PDF

A Study on the Development of Multi-pilotting-type Progressive Die for U-bending Part Process

  • Sim, Sung-Bo;Lee, Sung-Taeg;Jang, Chan-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.45-51
    • /
    • 2003
  • The multi-piloting type progressive die for U-bending sheet metal production part is a very specific division. This study reveals the sheet metal forming process with multi-forming die by center carrier type feeding system. Through the FEM simulation by DEFORM, it was accepted to u-bending process as the first performance to design of strip process layout. The next process of die development was studied according to sequence of die development, i.e die structure, machining condition for die making, die materials, heat treatment of partially die components, know-how and so on. The feature of this study is the die development of scrapless progressive die of multi-stage through the modeling on the I-DEAS program, components drawing on the Auto-LISP, CAD/CAM application, ordinary machine tool operating and revision by tryout.

  • PDF

A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구)

  • 한흥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF

A Study on the Chip Shapes Properties of the Fiber Reinforced Plastics by High Speed Drilling Process (복합재료의 고속드릴링 가공시 칩형태에 관한 연구)

  • Sung In-Sik;Lim Se-Hwan;Kim Joo-Hyun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.168-173
    • /
    • 2005
  • Composite material is combined with two or more chemical ingredient and different components. FRP has been widely used for the structure of aircraft, ships, automobiles, sporting goods and other machines because of their high specific strength, high specific stiffness and excellent fatigue strength. Recently, the development of machine tool and cutting tool greatly relies on high speed process to satisfy high precision, high efficient machining, shortened process time to maximize material removal rate (MRR) through high cutting speed and feed speed. The research molded CFRP, GFRP as stacking sequence methods of two direction (orientation angle $0^{\circ}\;and\;0^{\circ}/9^{\circ}$) hand lay-up, drilled molded plates using cemented carbide drill and examined chip shapes, surface roughness properties.

  • PDF