• 제목/요약/키워드: Machining quality

검색결과 590건 처리시간 0.023초

자유곡면 NC 절삭가공시간 예측 (Estimation of Sculptured Surface NC Machining Time)

  • 허은영;김보현;김동원
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.254-261
    • /
    • 2003
  • In mold and die shops, NC machining process mainly affects the quality of the machined surface and the manufacturing time of molds and dies. The estimation of NC machining time is a prerequisite to measure the machining productivity and to generate a process schedule, which generally includes the process sequence and the completion time of each process. It is required to take into account dynamic characteristics in the estimation, such as the ac/deceleration of NC machine controllers. Intensive observations at start and end points of NC blocks show that a minimum feedrate, a key variable in a machining time model, has a close relation to a block distance, an angle between blocks, and a command feedrate. Thus, this study addresses regression models for the minimum feedrate estimation on short and long NC blocks considering these parameters. Furthermore, machining time estimation models by the four types of feedrate behaviors are suggested based on the estimated minimum feedrate. To show the validity of the proposed machining time model, the study compares the estimated with the actual machining time in the sculptured surface machining of several mold dies.

금형의 고정도ㆍ고능률 가공기술 (Advanced Machining Technology for Die Manufacturing)

  • 김정석;이득우;정융호;강명창;이기용;김경균;김석원
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.48-68
    • /
    • 2000
  • The high-speed machining technology of difficult-to-cut material is needed to achieve the high-efficiency of die manufacturing. The high-speed machining is applied in automobile, airplane and electricityㆍelectro industry etc, because it can improve machining efficiency and productivity with high speed, high power and high rotation. In this study, high speed machinability, tool wear characteristics and its monitoring, characteristics of damaged layer, machinability of difficult-to-cut material, characteristics of a free curved surface and method of CAD/CAM system were introduced to acquire the shortening of machining time, the improvement of machining efficiency and the high quality of machined surface. Therefore, we establish the stabilization condition of difficult-to-cut material machining and present the optimal cutting condition for high-efficiency cutting.

  • PDF

초경합금의 미세 전해 가공 (Micro Electrochemical Machining of Tungsten Carbide)

  • 최세환;주종남;김보현
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.111-116
    • /
    • 2006
  • Micro machining of tungsten carbide by electrochemical machining was studied. In ECM, machining conditions and electrolyte should be chosen carefully according to the property of workpiece materials. In this paper, sulfuric acid and nitric acid were used for tungsten carbide machining and machining characteristics were investigated according to machining conditions such as electrolyte, workpiece potential and applied pulse voltage. By using mixture of sulfuric acid and nitric acid, micro structures with sharp edge and good surface quality were obtained. Micro electrochemical turning was also introduced to fabricate micro shafts.

보간 길이 최적화에 의한 5축밀링 가공속도 향상 (Machining Speed Enhancement for 5-Axis Milling by Step Length Optimization)

  • 소범식;정융호
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.422-428
    • /
    • 2006
  • In this paper, an NC data optimization approach for enhancing 5-axis machining speed is presented. It is usual to use expensive commercial CAD/CAM programs for NC data of 5-axis machining, since it needs very large calculations for optimal tool positioning and orientation, tool path planning, and collision-free tool path generation. Since commercial CAD/CAM systems have similar functions and efficiency based on common algorithms of reliable theories, they do not have their own unique features for machining speed and efficiency. In other words, most commercial CAD/CAM systems consider only the characteristics of part geometry to be machined, which means that they generate almost the same NC data if the part to be machined is the same, even though different machines are used for the pin. A new approach is proposed for optimizing NC data of 5-axis machining, which is based on the characteristics of the machine to be operated. As a result, the speed of 5-axis machining can increase without losing machining accuracy and surface quality.

A5083 합금의 머시닝센터 가공에서 표면거칠기 특성에 관한 실험적 연구 (Experimental Research on the Surface Roughness Characteristics in Machining Center Machining of A5083 Alloy)

  • 최진우
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.57-62
    • /
    • 2021
  • CNC machining is used to fabricate various components. This has led to the development of processing-based industries for the production of automobile, appliances, semiconductors, and rockets. Additionally, this machining has enabled economical mass production of high-quality products in industries. Magnesium alloy with a hexagonal closed packed configuration is prone to difficulties during plastic machining, has a high oxygen affinity, and exhibits poor corrosion resistance to seawater and the atmosphere. In this research, Al alloy A5083 was used to investigate and analyze the surface roughness with a certain depth of cut fixed by the machining center (DVM-500II) and various feed rates, speeds, and processing methods after modeling and simulated machining with Gibbs CAM.

가공최적화를 통한 볼 스크류의 소음성능 향상에 관한 연구 (A Study on the Improvement of Noise Performance by Optimizing Machining Process Parameters on Ball Screw)

  • 허철수;최종훈;김현구;신중호;류성기
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.54-61
    • /
    • 2011
  • Ball screw systems are largely used in industry for motion control and motor applications. But the problem of noise, which really perplexes us, is highly correlated with the quality in ball screw systems all the way. In this paper, machining process parameters were evaluated in respects of technique, business, produce and quality to verify which impact influences the noise most. In order to adjust and compare, two comparison groups were set with the present parameters bench mark. Different ball screws were produced as specimens for the noise tests. Through comparing the noise performance of different parameters in the machining process respectively, a group of optimized machining process parameters were obtained. Another noise test was proceeded to know how noise performance was improved by optimizing the machining process parameters. At last, surface roughness tests have been done to know how surface roughness improved by optimization. The improvement of surface roughness is the main factor influences the noise performances.

레이저 빔 가공과 전해 에칭을 이용한 미세 가공 (Micromachining Using Laser Beam Machining and Electrochemical Etching)

  • 김장우;권민호;정도관;주종남
    • 한국정밀공학회지
    • /
    • 제29권10호
    • /
    • pp.1089-1095
    • /
    • 2012
  • Laser beam machining (LBM) using nanosecond pulsed laser is widely known to be rapid and non-wear process for micromachining. However, the quality itself cannot meet the precision standard due to the recast layer and heat affected zone. In this paper, a fabrication method for machining micro features in stainless steel using a hybrid process of LBM using nanosecond pulsed laser and electrochemical etching (ECE) is reported. ECE uses non-contacting method for precise surface machining and selectively removes the recast layer and heat affected zone produced by laser beam in an effective way. Compared to the single LBM process, the hybrid process of LBM and ECE enhanced the quality of the micro features.

마이크로 앤드밀의 가공특성분석 및 응용가공 연구 (Micro End-Mill Machining Characters and its Applications)

  • 제태진;이응숙;최두선;홍성민;이종찬;최환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.589-592
    • /
    • 2003
  • In the machining process of micros shape by using high-precision machining system and micro end-mill, it is important for machining characters of tools to be grasped in order to stably use tools of micro end-mill. In this study. we carried out an analytical experiment of basic machining features by using end-mill tools for the purpose of damage prevention and manufacture of high quality when the tools of micro end-mill are used. This experiment used a micro machining system with high precision and a variety of end-mill tools commercialized from tens to hundreds microns in diameter. To establish an optimal machining condition without tool damage, cutting force was analyzed according to the changes of tool diameter and cutting conditions such as cutting speed. feed rate, depth of cut. And an examination was performed for the shape and surface illumination of machining surface according to the changes of machining conditions. Based on these micro machining conditions, micro square pillar, cylinder shaft. thin wall with high aspect ratio, and micro 3-D structures such as micro gear and fan were manufactured.

  • PDF

Ni-Ti 형상기억합금의 전해가공의 특성 (ECM Characteristics of Ni-Ti Shape Memory Alloy)

  • 김동환;강지훈;박규열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.955-958
    • /
    • 2000
  • In this paper, the electro-chemical-machining characteristics of Ni-Ti Shape Memory Alloy(SMA) was investigated. From the experimental results, the optimal electro chemical machining conditions for satisfying the machining quality(fine surface & high recovery stress)might be confirmed. And it was concluded that optical electro chemical condition for Ni-Ti SMA could be obtained at approximately 100% current efficiency and high frequency pulse current.

  • PDF

다결정 다이아몬드의 와이어방전가공에 관한 연구 (The Study on the WEDM of Polycrystalline Diamond)

  • 김창호;강재원;오장욱;서재봉
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.67-74
    • /
    • 2008
  • Polycrystalline diamonds(PCD) tools are widely used in machining a large variety of advanced materials. However, the manufacture of PCD tool blanks is not an economical process. The shaping of PCD blanks with conventional machining methods(such a grinding) is long, labor-intensive process. This paper reports experimental investigation of the influence of electrical machining conditions on the metal removal rate of WEDM of PCD. Experimental results show that the longer pulse-on time and the shorter pulse-off time increase the metal removal rate and worsen the surface quality. The smaller grain size of diamond yields the metal removal rate and shows the better surface quality. Higher electrical conductivity of water yields worse surface roughness.

  • PDF