• 제목/요약/키워드: Machining quality

검색결과 590건 처리시간 0.041초

대형 항공부품용 5축 가공기에서의 예측정비에 관한 연구 (A Study on the Predictive Maintenance of 5 Axis CNC Machine Tools for Cutting of Large Aircraft Parts)

  • 박철순;배성문
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.161-167
    • /
    • 2020
  • In the process of cutting large aircraft parts, the tool may be abnormally worn or damaged due to various factors such as mechanical vibration, disturbances such as chips, and physical properties of the workpiece, which may result in deterioration of the surface quality of the workpiece. Because workpieces used for large aircrafts parts are expensive and require strict processing quality, a maintenance plan is required to minimize the deterioration of the workpiece quality that can be caused by unexpected abnormalities of the tool and take maintenance measures at an earlier stage that does not adversely affect the machining. In this paper, we propose a method to indirectly monitor the tool condition that can affect the machining quality of large aircraft parts through real-time monitoring of the current signal applied to the spindle motor during machining by comparing whether the monitored current shows an abnormal pattern during actual machining by using this as a reference pattern. First, 30 types of tools are used for machining large aircraft parts, and three tools with relatively frequent breakages among these tools were selected as monitoring targets by reflecting the opinions of processing experts in the field. Second, when creating the CNC machining program, the M code, which is a CNC auxiliary function, is inserted at the starting and ending positions of the tool to be monitored using the editing tool, so that monitoring start and end times can be notified. Third, the monitoring program was run with the M code signal notified from the CNC controller by using the DAQ (Data Acquisition) device, and the machine learning algorithms for detecting abnormality of the current signal received in real time could be used to determine whether there was an abnormality. Fourth, through the implementation of the prototype system, the feasibility of the method proposed in this paper was shown and verified through an actual example.

Surface Grinding of Tungsten Carbide for High Quality Unign Diamond Wheel

  • Seoung-Jung Heo
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.12-24
    • /
    • 1995
  • Various surface grinding experiments using resin bonded diamond abrasive wheels are carried out for tungsten carbide materials in order to minimize the damage on the ground surface and to purse the precise dimension compared to conventional grinding machine. When grinding quality is constant, theoretical grinding effect is changed according to the speed of workpiece. Accordingly, grinding forces, which are Fn, Ft, were analyzed for the machining processes of tungsten-carbide material to obtain optimum grinding conditions. Brief investigation is carried out to decrease the dressing efficiency of resinoid bonded diamond grinding wheel to grind tungsten-carbide. Truing is also carried out to provide a desired shape on a wheel or to correct a dulled profile. High quality in dimensional accuracy and surface are often required as a structural components, therefore 3-points bending test is carried out to check machining damage on the ground surface layer, which in one of sintered brittle material. From this experimental study, some useful machining data and information to determine proper machining condition for grinding of tungsten-carbide materials are obtained.

  • PDF

미세가공면의 상태 감시를 위한 다중신호특성에 관한 연구 (Multi-signal characteristics for condition monitoring of micro machined surface)

  • 장수훈;박진효;강익수;김정석
    • 한국기계가공학회지
    • /
    • 제8권1호
    • /
    • pp.31-36
    • /
    • 2009
  • Micro-machining technology has been adopted for shape accuracy of micrometer and sub-micrometer scale, surface roughness of tens nanometer in industries. In micro-machining process the quality of machined surface is derived from machining condition and tooling. This paper investigates AE(acoustic emission) and cutting force signals according to machined surface quality related to machining condition. Machined surface quality was analyzed by the AE and cutting force parameter which reflect surface morphology. The characteristics of signal were extracted for process optimization by monitoring both the tool condition and the machined surface texture in micro end milling process.

  • PDF

볼 엔드밀을 이용한 금형 구면 가공의 표면품질 향상에 관한 연구 (Surface Quality Improvements on the Spherical Shaped Mold using Ball End Milling)

  • 윤일우;황종대
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.71-76
    • /
    • 2020
  • Various machining methods are being studied to improve the processing quality of the spherical R shape in press die. In this paper, we confirmed that changes in machining quality were associated with changes in cutting direction, path, and cutting angle, which are commonly used in the machining of molds. We obtained a surface roughness graph with each condition change in one specimen using an instrument that measured geometry and surface roughness simultaneously. The results of the study showed that the best surface roughness in the finish cut of the spherical surface was obtained using upward pick feed machining.

엔드밀 정밀도 향상을 위한 주변기술 연구

  • 김경배;서천석;김영경;이용인;최영근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.450-455
    • /
    • 2002
  • Quality of endmill applied to high speed Machining can be classified in precision and tool life. Especially, Endmills are damaged easily when high speed machining are occurred vibration and deflection by thin and long shape of endmill, limitation of chip-pocket. Furthermore, Endmills are determined tool life by the quality of base material and the character of coating. This study have carried on research and analysis about grinding technique, circumference technique to improve precision that determine the quality of endmill. As the result of this study, that the technique is able to manufacture endmill applied to high speed Machining have been obtained.

  • PDF

미세가공 시스템을 이용한 미세 그루브 가공실험 (Micro-groove Cutting Experiments using Micro-Machining System)

  • 이선우;이동주;이응숙;제태진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.263-268
    • /
    • 2001
  • The needs for precision machining of micro to milli parts have been increased as the industry require high quality products, especially for the micro-machining of IT products. The ultra-precision machining system is essential for the micro machining of fine structures, which insures machining accuracy, low systematic and random error and repeatability. In this study, we developed micro machining system, which is equipped with air bearing stage for ultra precision machining and also we present the results of V-grooving experiments, conducted by the developed system, to verify the performance of system. The results show that the machined V-grooving had good accuracy with repeatable stability.

  • PDF

고속가공을 통한 커넥팅 로드용 금형 가공 (Die and Mold Making for Connecting Rod Parts through High Speed Machining)

  • 임유업;김정석;강명창;이득우;정융호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.926-929
    • /
    • 2000
  • Recently, there are lots of applications in machining dies using CAD/CAM systems. which results in reduction of machining time and rising of machining efficiency applying high speed machining and high quality machining. Investigation of machinability is necessary in order to apply high speed machining. In machining complicate 3D model such as connecting rod die. the need of high speed machine and coated tool is requested recently in this field. This paper introduce the database of high speed machining to improve machining efficiency of connecting rod die.

  • PDF

Collision-free tool orientation optimization in five-axis machining of bladed disk

  • Chen, Li;Xu, Ke;Tang, Kai
    • Journal of Computational Design and Engineering
    • /
    • 제2권4호
    • /
    • pp.197-205
    • /
    • 2015
  • Bladed disk (BLISK) is a vital part in jet engines with a complicated shape which is exclusively machined on a five-axis machine and requires high accuracy of machining. Poor quality of tool orientation (e.g., false tool positioning and unsmooth tool orientation transition) during the five-axis machining may cause collision and machine vibration, which will debase the machining quality and in the worst case sabotage the BLISK. This paper presents a reference plane based algorithm to generate a set of smoothly aligned tool orientations along a tool path. The proposed method guarantees that no collision would occur anywhere along the tool path, and the overall smoothness is globally optimized. A preliminary simulation verification of the proposed algorithm is conducted on a BLISK model and the tool orientation generated is found to be stable, smooth, and well-formed.

CNC공작기계의 열변형 오차보정 (II) - 알고리즘 및 시스템 인터폐이스 중심 - (Algorithm of Thermal Error Compensation for the Line Center - System Interface -)

  • 이재종;최대봉;박현구;류길상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.417-422
    • /
    • 2002
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been implemented on the machining center in order to compensate thermal error of machine tools under the real-time. The thermal errors are predicted using the neural network and multi-regression modeling methods. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

반도체 플라즈마 에칭 상부 전극의 표면 품질 형성에 관한 가공법 평가 (Evaluation of the Machining Method on the Formation of Surface Quality of Upper Electrode for Semiconductor Plasma Etch Process)

  • 이은영;김문기
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.1-5
    • /
    • 2019
  • This study has been focused on properties of surface technology for large diameter upper electrode using in high density plasma process as like semi-conductor manufacturing process. The experimental studies have been carried out to get mirror surface for upper electrode. For a formation of high surface quality upper electrode, single crystal silicon upper electrode has been mechanical and chemical machining worked. Mechanical machining work of the upper electrode is carried out with varying mesh type using diamond wheel. In case of chemical machining work, upper electrode surface roughness was observed to be strongly dependent upon the etchant. The different surface roughness characteristics were observed according to etchant. The machining result of the surface roughness and surface morphology have been analyzed by use of surface roughness tester, laser microscope and ICP-MS.