• 제목/요약/키워드: Machining mechanism

검색결과 286건 처리시간 0.024초

환경 친화적 기계가공 기술에 관한 연구 연삭공정에서의 절삭유 미립화와 환경영향(I) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact in Grinding Operation (I))

  • 황준;정의식
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.61-69
    • /
    • 2005
  • This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge fur further research of environmental consciousness machining development.

점 전극을 이용한 마이크로 전해가공 기구에 관한 연구 (A Study on the Mechanism of Micro-ECM by Use of Point Electrode Method)

  • 김봉규;전종업;박규열
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.77-83
    • /
    • 2002
  • This research aimed at from the establishment of theory on micro electrochemical machining mechanism to the implementation of a practical fabrication system of micro parts. In detail, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result, the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.

알루미늄 합금의 초정밀 선삭 가공에 있어서 PCD와 MCD 공구의 절삭 특성 비교 (The Comparison of Cutting Characteristics of PCD and MCD Tools in the Ultraprecision Turning of Aluminum Alloy)

  • 김형철;함승덕;홍우표;박영우;김기수
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.68-75
    • /
    • 2000
  • This paper presents the construction of an ultra-precision machining system and machining experiments using the developed system. The system is composed of air bearing system, granite bed, air pad, and linear feeding mechanism. The cutting conditions have great effect on the surface quality in ultra-precision machining. the ultra-precision machining is mainly processed by several ${\mu}{\textrm}{m}$ depth of cut and feed rate. For this, tools with sharper cutting edge and less tool wear are needed. To satisfy these requirement, diamond is generally used as a tool material for ultra-precision machining. In order to evaluate the cutting characteristics of the PCD and MCD tools on the aluminum alloy, the machining experiments performed using the developed system.

  • PDF

초음파 진동을 이용한 취성재료 가공기술에 관한 연구 (A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration)

  • 이석우;최헌종;이봉구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.969-972
    • /
    • 1997
  • Ultrasonic machining technology has been developed over recent years for he manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramic in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvement in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by he electrical or chemical characteristics of the work material, making it suitable for application to ceramics. In order to improve the currently used ultrasonic machining using ultrasonic energy, technical accumulation is needed steadily through development of exciting device of ultrasonic machine composed of piezoelectric vibrator and horn. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

유연힌지 최적화를 이용한 스핀들 스테이지 설계에 관한 연구 (A study on designing spindle stage using optimization of flexure)

  • 박재현;김효영;유형민
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.22-27
    • /
    • 2022
  • The demand for new processing technology that can improve productivity is increasing in industries that require large-scale and various products. In response to this demand, a robot machining system with flexibility is required. Because of the low rigidity of the robot, the robot machining system has a large error during machining and is vulnerable to vibration generated during machining. Vibration generated during machining deteriorates machining quality and reduces the durability of the machine. To solve this problem, a stage for fixing the spindle during machining is required. In order to compensate for the robot's low rigidity, a system combining a piezoelectric actuator for generating a large force and a guide mechanism to actuate with a desired direction is required. Since the rigidity of flexible hinges varies depending on the structure, it is important to optimal design the flexible hinge and high-rigidity system. The purpose of this research is to make analytic model and optimize a flexible hinge and to design a high rigidity stage. In this research, to design a flexible hinge stage, a concept design of system for high rigidity and flexure hinge modeling is carried out. Based on analytic modeling, the optimal design for the purpose of high rigidity is finished and the optimal design results is used to check the error between the modeling and actual simulation results.

자유곡면 CFRP 판형 가공물 신속고정용 유연지그 및 엔드 이펙터 (End Effectors and Flexible Fixtures for Rapidly Holding Freeform-Surface CFRP Workpieces)

  • 손영훈;도민득;최해진
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.243-246
    • /
    • 2017
  • In this study, flexible fixtures and end effectors are conceptually designed for the holding of thin-walled carbon-fiber reinforced-plastic (CFRP) workpieces in machining processes. Firstly, the fixture scenarios and system requirements for the conceptual designs of flexible-fixture and core units are proposed, including the propounding of the workpiece-holding mechanism and the core-unit requirements. A ball-joint pneumatic system is determined as a locking mechanism of the flexible-fixture system for the machining of thin-walled components. Secondly, conceptual designs of the core units are suggested with the driven requirements from the fixture scenarios. A self-tilting mechanism and an end-effector return mechanism are also proposed. Finally, the prototypes of the core units are manufactured, and the workpiece-holding capacity of each prototype is measured.

3자유도 병렬형 마이크로 로봇 설계 (Design of 3 DOF Parallel Micro Robot)

  • 나흥열;이병주;서일홍;김희국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.429-429
    • /
    • 2000
  • Micro positioning mechanism is the key technology in many fields, such as scanning electron microscopy (SEM), x-ray lithography, mask alignment and micro-machining. In the paper, a 3DOF parallel-type micro-positioning mechanism is proposed. This mechanism uses piezo-actuators and Flexure hinge to control x, y and $\theta$ motion. It is shown both analytically and numerically that 2 DOF flexure hinge model was better precision than 1 DOF flexure hinge design.

  • PDF

미세형상가공시 센서융합을 이용한 공구 마멸 및 파손 메커니즘 검출 (The estimation of tool wear and fracture mechanism using sensor fusion in micro-machining)

  • 임정숙;왕덕현;김원일;이윤경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.245-250
    • /
    • 2002
  • A successful on-line monitoring system for conventional machining operations has the potential to reduce cost, guarantee consistency of product quality, improve productivity and provide a safer environment for the operator. In fee-shape machining, typical signs of tool problems such as vibration, noise, chip flow characteristics and visual signs are almost unnoticeable without the use of special equipment. These characteristics increase the importance of automatic monitoring in fine-shape machining; however, sensing and interpretation of signals are more complex. In addition, the shafts of the micro-tools break before the typical extensive cutting edge of the tool gets damaged. In this study, the existence of a relationship between the characteristics of the cutting force and tool usage was investigated, and tool breakage detection algorithm was developed and the fellowing results are obtained. In data analysis, didn't use a relative error compare which mainly used in established experiment and investigated tool breakage detection algorithm in time domain which can detect AE and cutting force signals more effective and accurate.

  • PDF

고정밀 밀링가공을 위한 공구처짐 보정시스템 개발 (Development of a Tool Deflection Compensation System for Precision End-milling)

  • 최종근;양민양
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.42-46
    • /
    • 1993
  • This paper presents development of a pratical tool deflection compensation system in order to reduce the machining error by the tool deflection in the end-milling process. The system is a tool adapter which includes 2-axis force sensor for detecting tool deflection and 2-axis tool tilting device for adjusting tool position through computer interface in on-line process. In experiments, it is revealed that the force sensor applying parallel plate principle and strain gauge is proper to obtain dynamic process signal, and the tilting device using stepping motor and cam drive mechanism is suitable to have necessary action. By the system and control algorithm, it is possible to get precise machining surface profile without excessive machining error and overcut generated due to increased cutting force in more productive machining condition.

  • PDF