• 제목/요약/키워드: Machining System

검색결과 1,494건 처리시간 0.025초

절삭가공에서의 불량가공비용을 고려한 기계선정에 관한 연구 (A Study on the Machine Selection Problem Considering the Cost of Defective Products in the Machining Process)

  • 박찬웅
    • 디지털융복합연구
    • /
    • 제12권8호
    • /
    • pp.345-350
    • /
    • 2014
  • 생산시스템에서의 공정계획 의사결정에 있어서 가장 중요한 의사결정은 공정을 수행할 기계를 선정하는 문제이다. 일반적으로 기계선정의 결정 기준으로는 가공에 소요되는 비용을 최소화하는 기준을 사용하고 있다. 공정을 수행할 수 있는 기계들은 각각의 고유한 가공능력에 따라 다양한 불량률을 나타내게 된다. 따라서 본 연구에서는 일반적으로 고려하는 가공비용 뿐만 아니라 불량발생 비용을 고려하여 기계를 선정하고자 한다. 본 연구에서는 기계의 가공능력에 따른 불량발생에 관한 통계학적 모델을 사용하여 가공 총비용을 최소화하는 기계선정 절차를 제시하고자 한다.

미소직선 공구경로의 NURBS 변환 (NURBS Post-Processing of Linear Tool Path)

  • 김수진;최인휴;양민양
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1227-1233
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good fur precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied and the machining result of NURBS tool path was compared with that of linear tool path. The N-post including both a post-processing and a virtual machining software was developed. The N-Post transforms linear tool path to NURBS tool path and quickly shades a machined product on OpenGL view, while comparing a machined surface with a original CAD one. A virtulal machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error and machining time of post-processed NURBS tool path were investigated.

세이핑에 의한 렌티큘러 렌즈 금형 가공에 관한 연구 (A Study on Lenticular Lens Mold Fabrication by Shaping)

  • 제태진;이응숙;심용식;김응주;나경환;최두선
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.245-250
    • /
    • 2005
  • Recently, micro machining technology for high precision mold becomes more interested for mass production of high performance optical parts micro-grooved on the surface, which is under very active development due to its effectiveness in the view point of optical performance. Mechanical micro machining technology now has more competitiveness on lithography, MEMS or LIGA processes which have some problems to fabricate especially cylinder type of groove in such as lenticular lens for illumination angle modulation system. In this study. a lenticular lens mold with U-type micro groove is fabricated making utilizing of the benefit of the mechanical micro machining technology. A shaping machining process is adapted using 3 axis degree of freedom micro machining system and single crystal natural diamond tool. A brass and a electroless nickel materials are used for mold fabrication. Machining force, chip shape and machined surface are investigated from the experiment and an optimal machining condition is found based on the examined problems from the micro cutting process.

기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정 (Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System)

  • 이재종;양민양
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF

레이저빔을 이용한 알루미늄의 미세가공 (Micro Machining of Aluminium using Pulsed Laser Beam)

  • 신홍식
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.41-45
    • /
    • 2014
  • Micro fabrication technologies of aluminium have been required to satisfy many demands in technology fields. Pulsed laser beam machining can be an alternative method to accomplish the micro machining of aluminium. Pulsed laser beam can be applied to micro machining such as micro drilling and milling. Using pulsed laser beam, the machining characteristics of aluminium in micro drilling and milling were investigated according to average power, repetition rate, moving speed of spot. The laser beam machining with the optimal conditions can achieve precise micro figures. As a result, micro pattern, text and structures on aluminium surface was successfully fabricated by pulsed laser beam machining.

실험계획법을 이용한 고속가공의 가공정밀도 향상에 관한 연구 (A Study on the Improvement of Machining Accuracy in High Speed Machining using Design of Experiments)

  • 이춘만;권병두;고태조;정종윤;정원지
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.88-96
    • /
    • 2002
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feed rate, high-speed machining can give great advantages for the machining of dies and molds. This paper describes on the improvement of machining accuracy in high-speed machining. Depth of cut, feed rate and spindle revolution are control factors. The effect of the control factors on machining accuracy is investigated using two-way factorial design.

MQL 가공에서 기계가공면의 표면 품위 향상 (Quality Improvement of Machined Surface in MQL Machining)

  • 정종윤;조형찬;이춘만
    • 산업경영시스템학회지
    • /
    • 제30권3호
    • /
    • pp.54-61
    • /
    • 2007
  • Machining processes produce high accurate metallic parts in metal working industries. Lubrication for machining enhances quality of machined surface and it prolongs the life of cutting tools. Since lubricant is poisonous to human body and environment, it causes occupational diseases for workers and air pollution in environment. Because of these problems generated, developed countries do not permit the excessive usage of lubricant in machining shops. This research focuses on the development of MQL machining technique that consumes minimal amount of lubricant, which reduces possible outbreak of occupational diseases and air pollution. This research sets experimental equipments for MQL machining. Experiments for this study are designed with major machining parameters in MQL. Through the analysis of experiments, this paper presents the optimal machining parameters.

초음파에 의한 고 세장비 유리가공 특성 (Characteristics of High-Aspect-Ratio Ultrasonic Machining of Glass)

  • 신용주;김헌영;장인배;김병희;전병희
    • 소성∙가공
    • /
    • 제11권7호
    • /
    • pp.608-613
    • /
    • 2002
  • An ultrasonic machining process is efficient and economical means for precision machining of glass and ceramic materials. However, the mechanism of the process with respect to the crack initiation and propagation and the stress development in the ceramic workpiece subsurface arc still not well understood. In this research, we have investigated the basic mechanism of ultrasonic machining of ultrasonic machining of glass by the experimental approach. For this purpose, we designed and fabricated the desktop micro ultrasonic machine. The feed is controlled precisely by using the constant load control system. During machining experiments, the effects of abrasive characteristics and machining conditions on the surface roughness and the material removal rate are measured and compared.

볼 엔드밀에 의한 정밀 가공에 관한 연구 (A stydy on the precision machining in ball end milling system)

  • 양민양;심충건
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.50-64
    • /
    • 1994
  • Cutter deflections in the ball-end milling process is one of the main causes of the machining errors on a free-form surface. In order to avoid machining errors in this process, a methodology avoiding these machining errors on the free-form surfaces has been developed. In this method, feedrates in the finish cuts are adjusted for the prevention of machining errors. A model for the prediction of machining errors on the free-form surface is analytically derived as a function of feed and normal vector at the surface of contact point by the cutter. This model is applied to the dertermination of the adjusted feedrates which satisfy the machining tolerance of the surface. In the finish cuts of a simple curved surface, the suggested model is examined by the measurements of the generated machining error on this surface. And also, this surface is machined with the adjusted feedrates for the given machining tolerance. The measured machining errors on this surface are compared with the given tolerance. In this comparisons, it is shown that the predicted errors are fairly good agreement with the test results.

  • PDF

전자빔건 헤드유니트의 설계와 제작 (Establishment of Gun Head Unit for Electron Beam Machining System)

  • 강재훈;이찬홍;최종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1875-1878
    • /
    • 2005
  • It is not efficient and scarcely out of the question to use commercial expensive electron beam lithography system widely used for semiconductor fabrication process for the manufacturing application field of various devices in the small business scope. Then scanning electron microscope based electron beam machining system is maybe regarded as a powerful model can be used for it simply. To get a complete suite of thus proper system, column unit build up with electron beam gun head unit is necessarily required more than anything else to modify scanning electron microscope. In this study, various components included ceramic isolation plate and main body which are essentially constructed for electron beam gun head unit are designed and manufactured. And this electron beam gun head unit will be used for next connected study in the development step of scanning electron microscope based electron beam machining system.

  • PDF