• Title/Summary/Keyword: Machining Strategy

Search Result 61, Processing Time 0.02 seconds

A 5-Axis NC Machining Strategy Support System for an Impeller (임펠러 5축 NC가공을 위한 가공전략수립 지원시스템)

  • Cho, Min-Ho;Kim, Dong-Won;Heo, Eun-Young;Lee, Chan-Gi
    • IE interfaces
    • /
    • v.21 no.4
    • /
    • pp.411-417
    • /
    • 2008
  • An impeller is a type of high-speed rotor that is used to compress or transfer fluid under high-speed and pressure at high temperatures. The impeller is composed of an axial hub and several blades attached along the hub. The weight and shape of an impeller must be balanced, because their imbalances can cause noise and vibration, which can lead to the breakage of the impeller blades during operation. Thus, the hub and blades of an impeller are commonly machined in a 5-axis NC machine to obtain qualified surfaces. The impeller machining strategy or process plan can not be easily obtained due to the complex, overlapped and twisted shapes of impeller blades. Skillful machining process planners may generate appropriate machining strategies based on their experiences and floor data. However, in practice most shop floor data for the impeller machining is not well-structured such that it does not effectively provide a process planner with information for machining strategies and/or process plans. This paper reports the development of a case-based machining strategy support system (CBMS) that employs case-based reasoning to obtain the machining strategy of an impeller by using the existing machining strategies of the shop floor. The CBMS generates impeller machining strategies through a stepwise reasoning process considering the similarity features between the blade shapes and machining regions. A case study is provided to demonstrate that CBMS can generate useful machining strategies facilitating process planners. The developed system can simulate the tool paths of impeller machining and runs on the web.

Multi-stage NC Milling of Uncut Volume caused by Gouging Interference at the Machining of Curved Surfaces (곡면가공시 공구간섭에 따른 미절삭체적의 다단계 NC가공)

  • 맹희영;차지경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.439-444
    • /
    • 2004
  • A new efficient intelligent machining strategy named the Steepest Directed Tree method is presented in this study, which makes surface model discrete with triangulation meshes and the cutter paths track along the tree directions. In order to formulate these algorithms practically, it is deduced the multi-stage machining approach of uncut volume caused by cutter gouging in the course of milling using flat end mill. It is systematized the checking process the cutter interference by grouping the 6 kinds of gouging types, which yields the environment of connectivity data lists including CL-data, and then the multi-stage machining strategy, that minimizes uncut area by continuously sequencing the generative subsequent CL-paths, is shamed to determine the second tool path for the next uncut area and to compose the operating multi-stage cutting processes. The completed machining system of curved surfaces is evaluated by testing the practical machining experiments which have various kinds of shape conditions.

  • PDF

A study on the adaptive control of process parameters using torque for end milling operation in machining center (Machining Center에서 End Millirh할 때 Torgue에 의한 가공변수의 적응제어에 관한 연구)

  • 박천령;윤문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.889-897
    • /
    • 1986
  • The purpose of this study is to describe the strategy of machining process suitable for developing adaptive control with constraint of NC-machine tool. The algorithm that controls machining process parameters of every sampling time is established for the constraint of torque in machinig center. To prove this AC algorithm, manual AC-unit control test is used for simulating the on-line AC strategy control. Also machining tests are carried out on a CNC-machining center fitted with the ACC system and compared with the simulated results. The practical effectiveness of the ACC systems so discussed and the reduction of machining time are demonstrated with reference to typical models of cutting workpieces. As a typical model, taper and step geometry model are selected. The computer simulation results have a good agreement with the experimental observation and make it possible to develope a NC-machine tool with an on-line ACC system.

Development of Micro-EDM Machine for Microshaft and Microhole Machining (미세 축ㆍ구멍 가공을 위한 미세방전가공기의 개발)

  • 김규만;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.55-61
    • /
    • 1998
  • Recently, the needs of machining technologies of very small parts have been increasing with advent of micro-revolution. These technologies have mostly used the method applied to semi-conductor production process such as LIGA, etc. But they have serious difficulties to settle down in terms of workpiece materials, machining thickness, 3-dimensional structure. Therefore. mciro-machining technology using EDM(Electrical Discharge Machining) was proposed. It is very difficult to machine the micro-parts (microshaft, microhole) using conventional machining. Micro-machining using BDM can machine the micro-parts easily because it requires little machining force. This MEDM(Micro-EDM) need the capabilities to move a electrode and control a discharge energy precisely, and the gap control strategy to maintain the optimal discharge condition is necessary. Therefore, in this study, the new EDM machine with high precision motion stage and high-performance EDM device was developed. Using this MEDM machine, we have machined microshaft and microhole with various shapes and sizes.

  • PDF

Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade (터빈블레이드의 5축 고속가공에서 최적가공경로의 선정)

  • Lim T. S.;Lee C. M.;Kim S. W.;Lee D. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

F/T sensor application for robotic deburring

  • Park, Jong-Oh;Lee, Heck-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1677-1680
    • /
    • 1991
  • Machining is a bottleneck in robot application technologies because of uncertainty of position/form, poor reliability of robot function and low reaction speed of robot to changes of surroundings, But in grinding automation with relatively low machining speed it is feasible to integrate of sensor signal in machining. In this paper strategy for robotic grinding with F/T sensor will be presented and with that the experimental results will be discussed. F/T sensor signal in grinding of strategy weld seam are transferred to PC, which plays a role as cell computer and transform F/T data to robot position and/or orientation, speed correction data according to programmed algorithm. The possibility and boundary of robotic grinding with F/T sensor intergration is discussed.

  • PDF

A Concept of Self-Optimizing Forming System (자율 최적 성형 공정 시스템 개발)

  • Park, Hong-Seok;Hoang, Van-Vinh;Song, Jun-Yeob;Kim, Dong-Hoon;Le, Ngoc-Tran
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.292-297
    • /
    • 2013
  • Nowadays, a strategy of the self-optimizing machining process is an imperative approach to improve the product quality and increase productivity of manufacturing systems. This paper presents a concept of self-optimizing forming system that allows the forming system automatically to adjust the forming parameters online for guarantee the product quality and avoiding the machine stop. An intelligent monitoring system that has the functions of observation, evaluation and diagnostic is developed to evaluate the pully quality during forming process. Any abnormal variation of forming machining parameters could be detected and adjusted by an intelligent control system aiming to maintain the machining stability and the desired product quality. This approach is being practiced on the pully forming machine for evaluating the efficiency of the proposed strategy.

Optimization of Ball End Milling Feedrate considering Variation of Slopes in the CNC Machining of Sculptured Surfaces (자유곡면의 경사도에 따른 볼엔드밀링 이송속도의 최적화 연구)

  • Maeng, Hee-young;Yoon, Jang-sang
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.209-214
    • /
    • 2003
  • This study presents the analysis of ball end milling machinability and its application to the determination of the optimum feedrate in the CNC machining process of sculptured surface. The methods which estimate the cutting force system is approached experimentally. The estimation strategy, named technological processor, was applied to the machining process of sculptured surface for finding optimum variable feedrate. From the result of practical implementation for the test model, it is ascertain that the technological processor have brought the dispersion of force profiles. As compared with conventional imposing of cutting conditions, the machining time has reduced by more than 60%.

  • PDF

An approach for machining allowance optimization of complex parts with integrated structure

  • Zhang, Ying;Zhang, Dinghua;Wu, Baohai
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.248-252
    • /
    • 2015
  • Currently composite manufacturing process, such as linear friction welding plus NC machining, is the main method for the manufacturing and repairing of complex parts with integrated structure. Due to different datum position and inevitable distortion from different processes, it is important to ensure sufficient machining allowance for complex parts during the NC machining process. In this paper, a workpiece localization approach for machining allowance optimization of complex parts based on CMM inspection is developed. This technique concerns an alignment process to ensure sufficient stock allowance for the single parts as well as the whole integrated parts. The mathematical model of the constrained alignment is firstly established, and then the symmetric block solution strategy is proposed to solve the optimization model. Experiment result shows that the approach is appropriate and feasible to distribute the machining allowance for the single and whole parts for adaptive machining of complex parts.