• Title/Summary/Keyword: Machining Rate

Search Result 567, Processing Time 0.023 seconds

Model-based Design and Performance Analysis of Main Control Valve of Flap Control System (플랩제어시스템 주제어밸브의 모델기반 설계 및 성능해석)

  • Cho, Hyunjun;Ahn, Manjin;Joo, Choonshik
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.50-59
    • /
    • 2019
  • The design of the main control valve, which is the main component of the flap control system, was based on actual manufacturing experience on the basis of trial and error method. In this paper, a model-based part design method is proosed. The flap control system consists of a main control valve, fail-safe valve, solenoid valve, LVDT and force motor. The main control valve consists mainly of a spool and slot. The important design parameters of the main control valve are the slot width, overlap and clearance. AMESim is linked to the model and it analyzes the flow path of the main control valve. Applying the proposed design procedure, it was confirmed that the required performance was satisfied within the allowable machining error range.

Residual Stress Analysis of New Rails Using Contour Method (굴곡측정법을 이용한 신 레일의 잔류응력 분석)

  • Song, Min Ji;Choi, Wookjin;Lim, Nam-Hyoung;Kim, Dongkyu;Woo, Wanchuck;Lee, Soo Yeol
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.393-399
    • /
    • 2018
  • It is well recognized that residual stresses of the rails, generated from the manufacturing process including roller straightening and heat treatment, play an important role in determining fatigue and fracture properties of the rails. Thus, it has been a challenge to measure the residual stresses accurately. In this work, contour method was employed to evaluate the residual stresses existing in interior of the rails. The cross section perpendicular to the longitudinal direction of the rail was cut at a very slow rate using electric discharge machining (EDM), after which a laser-based flexural measuring instrument enabled us to precisely measure the flection of the cross section. The measured data were converted into the residual stresses using the commercial finite element package, ABAQUS, through a user-defined element (UEL) subroutine, and the residual stresses of the new rails (50N, KR60, UIC60) with three different specifications were compared.

Machinability investigation of gray cast iron in turning with ceramics and CBN tools: Modeling and optimization using desirability function approach

  • Boutheyna Gasmi;Boutheyna Gasmi;Septi Boucherit;Salim Chihaoui;Tarek Mabrouki
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.119-137
    • /
    • 2023
  • The purpose of this research is to assess the performance of CBN and ceramic tools during the dry turning of gray cast iron EN GJL-350. During the turning operation, the variable machining parameters are cutting speed, feed rate, depth of cut and type of the cutting material. This contribution consists of two sections, the first one deals with the performance evaluation of four materials in terms of evolution of flank wear, surface roughness (2D and 3D) and cutting forces. The focus of the second section is on statistical analysis, followed by modeling and optimization. The experiments are conducted according to the Taguchi design L32 and based on ANOVA approach to quantify the impact of input factors on the output parameters, namely, the surface roughness (Ra), the cutting force (Fz), the cutting power (Pc), specific cutting energy (Ecs). The RSM method was used to create prediction models of several technical factors (Ra, Fz, Pc, Ecs and MRR). Subsequently, the desirability function approach was used to achieve a multi-objective optimization that encompasses the output parameters simultaneously. The aim is to obtain optimal cutting regimes, following several cases of optimization often encountered in industry. The results found show that the CBN tool is the most efficient cutting material compared to the three ceramics. The optimal combination for the first case where the importance is the same for the different outputs is Vc=660 m/min, f=0.116 mm/rev, ap=0.232 mm and the material CBN. The optimization results have been verified by carrying out confirmation tests.

An Experimental Study on the Machinability Influenced by Coated and Uncoated Tips, and Damping Device in Turning (선삭에 있어서의 피복, 비피복팁 및 방진장치가 절삭성에 미치는 영향에 관한 실험적 연구)

  • Nam, Joon-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.62-75
    • /
    • 1986
  • An experimental investigation of the machining characteristics such as cutt- ing resistance, surface roughness and tool wear in turning the test pieces of SM45C steel with both coated and uncoated carbide tool tips under various cutting conditions was conducted. Also a specially designed simple vibration damping device was experimentally evaluated for its effectiveness on machined surface roughness and a vibration test was conducted to confirm its ability to reduce the amplitude. Based on these tests finding, the following conclusions are made; 1. The cutting resistance($\textrm{p}_{1}$) increases as the depth of cut(d) increases at fixed feed rate(f) over the cutting speed(v) range of 43-226 m/min and p decreses about 18% average when V is increased for fixed d and f. At V= 226m/min, $\textrm{p}_{1}$/for A, C tips are about the same level but $\textrm{p}_{1}$ for B tip is 15% less than A, C tips. 2. The specific cutting resistance(Ks) at V=226 m/min was derived for A, B, C tips respectively and the value of Ks for B rip is about 20% less than A, C tips. 3. The surface roughness(Ra) improves significantly as the cutting speed(V) is increased and this effect was greater when V>100 m/min. On the other hand, Ra deteriorates as the feed rate(f) is increased and this trend was accelerated when f>0.3 mm/rev. With regard to the difference of Ra values among A, B, C tips, at V=226m/min, d=0.4mm, and f=0.31-0.61mm/rev, Ra values for B.C tips are about 17% less than tip A. 4. The experimental tool wear equations were derived for A, B, C tips and from these equations, the tool life($\textrm{T}_{\textrm{L}}$) baced on the I.S.O. criteria was calculated to be $\textrm{T}_{\textrm{L}}$<$\textrm{T}_{\textrm{LB}}$<$\textrm{T}_{\textrm{LC}}$ for both flank wear($\textrm{V}_{\textrm{B}}$) and boundary wear($\textrm{V}_{\textrm{N}}$). Hence, the coated tips are superior to the uncoated tip and tip C is considered to be the best. 5. The cutting resistance may be slightly reduced and the surface rounghness improved when the damper is used especially when V>100 m/min. Therefore this damping device is considered to be effective and practical. The experimental surface roughness equations were also derived. Based on the vibration test, it is established that the surface roughness improvement was the result of amplitude reduction made possible by the damper.

  • PDF

Quantitative EC Signal Analysis on the Axial Notch Cracks of the SG Tubes (SG Tube 축방향 노치 균열의 정량적 EC 신호평가)

  • Min, Kyong-Mahn;Park, Jung-Am;Shin, Ki-Seok;Kim, In-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.374-382
    • /
    • 2009
  • Steam generator(SG) tube, as a barrier isolating primary to the secondary coolant system of nuclear power plants(NPP), must maintain the structural integrity far the public safety and its efficient power generation capacity. And SG tubes bearing defects must be timely detected and taken repair measures if needed. For the accomplishment of these objectives, SG tubes have been periodically examined by eddy current testing(ECT) on the basis of administrative notices and intensified SG management program(SGMP). Stress corrosion cracking(SCC) on the SG tubes is not easily detected and even missed since it has lower signal amplitude and other disturbing factors against its detection. However once SCC is developed, that can cause detrimental affects to the SG tubes due to its rapid propagation rate. Accordingly SCC is categorized as prime damage mechanism challenging the soundness of the SG tubes. In this study, reproduced EDM notch specimens are examined for the detectability and quantitative characterization of the axial ODSCC by +PT MRPC probe, containing pancake, +PT and shielded pancake coils apart in a single plane around the circumference. The results of this study are assumed to be applicable fur providing key information of engineering evaluation of SCC and improvement of confidence level of ECT on SG tubes.

A Study on the High Pressure Pump Simulation Model of a Diesel Injection System (디젤 분사시스템의 고압펌프 시뮬레이션 모델에 대한 연구)

  • Kim, Joongbae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.102-109
    • /
    • 2017
  • The high pressure pump of a diesel injection system compresses the fuel supplied at low pressure into high pressure fuel and maintains the fuel of the common rail at the required pressure level according to the engine operating conditions. The high pressure pump is required to operate normally in order to compress the fuel to a high pressure of 2000 bar during the entire lifetime of the vehicle. Consequently, a suitable design technique, material durability and high precision machining are required. In this study, the high pressure pump simulation model of a 1-plunger radial piston pump is modelled by using the AMESim code. The main simulation parameters are the displacement, flow rate and pressure characteristics of the inlet and outlet valves, cam torque characteristics, and operating characteristics of the fuel metering valve and overflow valve. In addition, the operating characteristics of the pump are simulated according to the parameter changes of the hole diameter and the spring initial force of the inlet valve. The simulation results show that the operation of the developed pump model is logically valid. This paper also proposes a simulation model that can be used for current pump design changes and new pump designs.

NOVEL CNC GRINDING PROCESS CONTROL FOR NANOMETRIC SURFACE ROUGHNESS FOR ASPHERIC SPACE OPTICAL SURFACES (우주망원경용 비구면 반사경 표면조도 향상을 위한 진화형 수치제어 연삭공정 모델)

  • 한정열;김석환;김건희;김대욱;김주환
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.141-152
    • /
    • 2004
  • Optics fabrication process for precision space optical parts includes bound abrasive grinding, loose abrasive lapping and polishing. The traditional bound abrasive grinding with bronze bond cupped diamond wheel leaves the machine marks of about $20{mu}m$ rms in height and the subsurface damage of about 1 ${mu}m$ rms in height to be removed by subsequent loose abrasive lapping. We explored an efficient quantitative control of precision CNC grinding. The machining parameters such as grain size, work-piece rotation speed and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis. The effectiveness of such grinding prediction models was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment achieved the predictability down to ${pm}20$ nm in height and the surface roughness down to 36 nm in height. This study contributed to improvement of the process efficiency reaching directly the polishing and figuring process without the need for the loose abrasive lapping stage.