• Title/Summary/Keyword: Machining Parameters

Search Result 463, Processing Time 0.024 seconds

Acoustic Emission Feedback for Precison Laser Deburring (정밀 레이저 디버링을 위한 어쿠스틱 에미션 피드백)

  • Lee, Seoung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.186-193
    • /
    • 1999
  • Sensor feedback for process control is one of the essential elements is an automated deburring procedure. This paper presents the implementation of acoustic emission (AE), which has been developed as a feedback sensing technique for precision (mechanical) deburring, in a precision laser deburring process. AE signals were sampled for laser machining/deburring under various experimental conditions and analyzed using several signal-processing methods including AErms and spectral analysis. The results, such as the sensitivity of AE signals for different laser cutting depths, edge detection capability and the frequency analysis show a clear correlation between physical process parameters and the AE signals. A subsequent control strategy for deburring automation is also briefly discussed.

  • PDF

A Study on the Diagnosis of Cutting Tool States Using Cutting Conditions and Cutting Force Parameters(l) - Signal Processing and Feature Extraction - (절삭조건과 절삭력 파라메타를 이용한 공구상태 진단에 관한 연구(I) - 신호처리 및 특징추출 -)

  • Cheong, C.Y.;Yu, K.H.;Suh, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.135-140
    • /
    • 1997
  • The detection of cutting tool states in machining is important for the automation. The information of cutting tool states in metal cutting process is uncertain. Hence a industry needs the system which can detect the cutting tool states in real time and control the feed motion. Cutting signal features must be sifted before the classification. In this paper the Fisher's linear discriminant function was applied to the pattern recognition of the cutting tool states successfully. Cutting conditions and cutting force para- meters have shown to be sensitive to tool states, so these cutting conditions and cutting force paramenters can be used as features for tool state detection.

  • PDF

Machining Characteristics in High Speed Endmill Operation considering Clearance angle (고속용 엔드밀 가공 시 여유각을 고려한 가공특성)

  • 고성림;박정남;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.22-25
    • /
    • 2002
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed endmilling. The tool geometry parameters and cutting process have complex relationship. In order to explain the effect of clearance angle and exist the optimal clearance angle according to the diameter, Using various tool with different clearance angle, numerous cutting tests (cutting force, surface accuracy, too life) was undertaken to show the relationship between clearance angle and cutting process.

  • PDF

Self-Organizing Fuzzy Logic Controller for CNC Feed Drive Systems with Large Disturbances (큰 외란이 존재하는 CNC 이송 구동계를 위한 적응 퍼지논리 제어기)

  • 지성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.180-192
    • /
    • 1998
  • This paper introduces a new self-organizing fuzzy logic controller (SOFLC) for precision contour machining in the presence of large disturbances which adjusts both input and output membership functions simultaneously. The parameters of the proposed controller are self-tuned in real-time according to a continuous measurement of the performance of the controller itself and estimated disturbance values. The proposed controller as well as a conventional fuzzy logic controller and a PID controller were simulated and implemented on a 3-axis milling machine in contour milling. Both the simulations and experiments show that the self-organizing fuzzy logic controller has superior performance in terms of contour tracking accuracy compared with the other two controllers.

  • PDF

Shape and Diameter Control of Microshafts in Electrochemical Process (전해 프로세스에 의한 미세축 가공시 형상 및 직경 제어)

  • Lim, Yung-Mo;Lim, Hyung-Jun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.50-56
    • /
    • 2001
  • Fabrication methods are shown to produce slender and cylindrical tungsten shafts by electrochemical etching. The shape of microshatf formed by electrochemical etching is determined by the combination of two conflicting factors, i.e., initial shape and diffusion layer. We can obtain a desirable shaft profile by adjusting the thickness gradient of diffusion layer. The diameter of microshaft is controlled by mathematical model based on relation between process parameters and diameter.

  • PDF

ELID Grinding of Hard-To-Machine Materials on Surface Grinder (평면연삭반에서 난삭재의 ELID연삭)

  • Kim, Gyung-Nyun;Jun qian, Jun-Qian;Ohmori hitoshi, Ohmori-Hitoshi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.157-164
    • /
    • 2001
  • The grinding for hard-to-machine materials, such as ceramics, super alloys etc., has proven to be a very difficult and consuming process utilizing ordinary methods. In order to conduct high efficiency machining of such materials, grinding processes using metallic bond diamond wheels and applying electrolytic in-process dressing(ELID) have been attempted on a surface grinding machine. In this study, the effects of grinding parameters, and grit sizes have been evaluated in view of surface roughness, grinding force as well as step difference in simultaneous grinding of different materials. The study and experimental results are presented in this paper.

  • PDF

Cutting Characteristics of Quartz by Abrasive Waterjet (연마제 워터 제트에 의한 쿼츠의 절단특성)

  • Chung, Nam-Yong;Jin, Yun-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.118-126
    • /
    • 2005
  • Abrasive waterjet (AWJ) cutting is an emerging technology for precision cutting of difficult-to-machining materials with the distinct advantages of no thermal effect, high machinability, high flexibility and small cutting forces. This paper investigated theoretical and experimental cutting characteristics associated with abrasive waterjet cutting of quartz GE214. It is shown that the proper variations of several cutting parameters such as waterjet cutting pressure, cutting speed and cutting depth improve the roughness on workpiece surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of quartz GE214, the optimal cutting conditions to improve the surface roughness and precision were proposed and discussed.

Forging Analysis of Upper Swash Plate for Unmanned Helicopter (무인 헬기용 상부 스와시 플레이트의 단조공정해석)

  • Kim, K.S.;Lee, O.Y.;Kong, J.H.;Yeo, H.T.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.347-349
    • /
    • 2009
  • Unmanned helicopters are needed in various fields such as monitoring system, agriculture and forest fire. Swash plate is a essential part for exact driving of unmanned helicopter. And it is usually produced by machining. In this research, hot forging process of upper swash plate has been studied to improve proof stress against repeated loading of the product. In the forming analysis, design parameters such as effective stress, effective strain and distribution of damage have been considered in the hot forging.

  • PDF

Analysis on the Vibration Characteristics of Ultra Precision Machine Tools (초정밀 가공 기계의 진동 특성 해석)

  • Kim, Seong Geol;Park, Young Ii;Kim, Seock Hyun
    • Journal of Industrial Technology
    • /
    • v.14
    • /
    • pp.119-125
    • /
    • 1994
  • Ultra-precision machine tool equipped with the diamond bite tip is used to machine optical products, drums of VTR or computer hard disk. It needs nano technology in the surface roughness of workpiece. To perform the nano scale machining, ultra-precision machine tool must be designed and manufactured in consideration of the vibration characteristics. In this paper, using the finite element analysis, we investigate the modal parameters of the ultra-precision machine tool structures, which use cast iron, granite and alumina ceramic for the bed materials. To verify the numerical results, we manufacture a model of ultra-precision machine tool using granite bed and perform impulse test. Through the theoretical and experimental analyses, we could compare and estimate the vibration characteristics of the three models for the ultra-precision machine tools.

  • PDF

Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy

  • Lee, Jin-Hyeon;Lee, Jae-Ha;Yang, Seong-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1482-1489
    • /
    • 2001
  • Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing proce sses using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of the possible input variables is determined because the error model parameters are only calculated mathematically-based on the number of temperature variables.

  • PDF