• Title/Summary/Keyword: Machining Mode

Search Result 117, Processing Time 0.027 seconds

A Study on the Selection of Measuring Mode in the Permittivity Measurement Using a Circular Cylindrical Cavity (원통형 공진기를 이용한 유전율 측정방법에서 측정모드 선택에 관한 연구)

  • Lee, Won-Hui;Kang, Soon-Kuk;Choi, Hong-Ju;Hur, Jung;Lee, Sang-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.218-226
    • /
    • 1999
  • This paper describes resonant mode selection with which the relative permittivity can be measured exactly. To measure the relative permittivity, a circular cylindrical cavity filled with dielectric material is used. When the circular cylindrical cavity is filled with the dielectric material, the air gap occurs on account of machining error. Accurate relative permittivity can be obtained by using less sensitive mode in resonant frequency variation by the air gap. As a result, Average 0.009% resonant frequency variation in the vertical and the radial direction appears at $TE_{011}$ mode. It is interesting that the frequency variation by the air gap at $TE_{011}$ mode turns out to be the least sensitive.

  • PDF

Design of Sliding Mode Controller for AC Servo Motor of circular interpolation error improvement (AC서보 모터의 원호보간 오차개선을 위한 슬라이딩모드 제어기 설계)

  • Kim Eun-youn;Lee Sing-mun;Kwak Gun-pyong;Kim Min-chan;Park Seung-Kyu;Ko Bong-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1685-1691
    • /
    • 2004
  • The objective of this study is aimed at reducing the contour error of AC Servo derives by improving the interpolation error of each axis through variable structure control system. The errors in machining process by AC Servo motor are due to many elements, such as the delay of the servo drivers, friction and the gain mismatch between x axis and y axis motors and so on. Sliding mode control system is applied to a AC servo drive as a numerical example in this paper. The experiment results which are compared with those of typical PI scheme show the validity of improvement in circular interpolation error of the system.

Diagnosis and Control of Machining States in Micro-Drilling for Productivity Enhancement (미세구멍 가공의 생산성 향상을 위한 상태식별 및 제어)

  • 정만실;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.117-129
    • /
    • 1998
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratio larger than 10) is recently having more attention in a wide spectrum of precision production industries. Alternative methods such as EDM. laser drilling, etc. can sometimes replace the mechanical micro-hole drilling but are not acceptable in PCB manufacture because of the inferior hole quality and accuracy. The major difficulties in micro-hole drilling are related to small signal to noise ratios, wandering motions of the inlet stage, high aspect ratios, high temperatures and so forth. Of all the difficulties. the most undesirable one is the increase of drilling force as the drill proceeds deeper into the hole. This is caused mainly from the chip effects. Peck-drilling is thus widely used for deep hole drilling despite that it suffers from low productivity. In the paper, a method of cutting force regulation is proposed to achieve continuous drilling. A PD and a sliding mode control algorithms were implemented through controlling the spindle rotating frequency. Experimental results show that the sliding mode control reduces the nominal cutting force and the variation of the cutting force better than the PD control. The advantages of the regulation, such as increase of drill life, fast stabilization of a wandering motion, and the precise positioning of the hole are verified in experiment.

  • PDF

Characteristics of Cut Surface by Abrasive Waterjet Cutting of Titanium Alloy (티타늄 합금의 연마제 워터 제트 절단에 의한 절단표면 특성)

  • Chung Nam-Yong;Jin Yun-Ho
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.86-93
    • /
    • 2005
  • Abrasive waterjet (AWJ) can provide a more effective means for precision of difficult -to-machining materials such as ceramics and titanium alloys. The present study is focused on the surface roughness of abrasive waterjet cut surfaces. This paper investigated theoretical and experimental surface characteristics associated with abrasive waterjet cutting of titanium alloy Gr2. It is shown that the proper variations of several cutting parameters such as waterjet cutting pressure, cutting speed and cutting depth improve the roughness and characteristics on specimen surfaces produced by AWJ cutting. From the experimental results by AWJ cutting of titanium alloy Gr2, the optimal cutting conditions to improve the surface roughness and precision were proposed and discussed.

A Study on the Failure and Life Assessment of High Speed Spindle (고속주축의 고장 및 수명평가에 관한 연구)

  • Lee, Tae Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • A reliability evaluation or prediction can be defined as MTBF which stands for mean time between failures (Exclusively for repairable failures). Spindle system has huge effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, it is unusually difficult to predict reliability because there are lack of data and research about reliability of spindle system. Standards and methods of examinations for reliability evaluation of machine tools are scarce at local and abroad as well. Therefore, this research is meant to improve the reliability of spindle system before mass produced with developing standards of reliability and methods of examinations through FMEA to assess reliability of spindle system in prototype stages of developing high speed spindle system of machining center.

Development of the Failure Data Analysis and Database Program for Machine Tools Parts (공작기계 부품의 고장 데이터 해석 및 데이터베이스 프로그램 개발)

  • 이수훈;김종수;송준엽;이승우;박화영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.209-213
    • /
    • 2001
  • The reliability data analysis for components of CNC machining center is studied in this paper. The failure data of mechanical part is analyzed by Exponential, Weibull, and Log-normal distributions. And then, the optimum failure distribution model is selected by goodness of fit test. The reliability data analysis program is developed with ASP language to use on the Internet. The failure rate, MTBF, life, and failure mode of mechanical parts are estimated and searched by this program. The failure data and analysis results are stored in the database.

  • PDF

리니어모터 스테이지 진직도 보상 제어

  • Gang, Min-Sik;Choe, Jeong-Deok
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.11-14
    • /
    • 2007
  • An additive servo-system is developed to improve straightness of linear motor stages. For linear motor stages used in the field of high-precision linear motion process, high straightness accuracy is necessary as well as positioning accuracy in the longitudinal axis. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to modeling error and friction disturbance, a sliding mode control is addressed. The effectiveness of the suggested mechanism and the control are illustrated along with some experimental results.

  • PDF

Dynamic Characteristics of the Tilting Turret System for Multi-Purpose Lathe (다기능 복합가공기의 틸팅터릿 시스템의 진동특성 해석)

  • 정상화;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.215-219
    • /
    • 2000
  • In multi-purpose lathe, the design of tilting turret slide system has on important and critical role enhance accuracy of the machining process. Tilting turret unit is traveled by 3-axis slide systems. There is a need to design this part very carefully. In this research, 3-axis sliding system with tilting turret is modeled by considering the element dividing, material proprties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of each structures such as saddle, careg, and turret are simulated by MSC/MASTRAN, for the purpose of developing the effective design.

  • PDF

Quality Function Deployment of Core Unit for Reliability Evaluation of Machine Tools (공작기계 핵심부품의 QFD 기술)

  • 송준엽;이승우;강재훈;강재훈;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.59-62
    • /
    • 2001
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high speed and intelligent have been developing for the betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and design review method using analyzing critical units of high speed and intelligent machine system. In addition, we have not only designed and developed test bed system for acquiring reliability data, but also apply QFD technique for satisfying quality function which is provided in design phase. From this study, we will expect to guide and introduce the reliability engineering in developing and processing phase of high quality product.

  • PDF

Evaluation of Reliability for critical unit of machinery system (기계류 핵심 유니트의 신뢰성 평가기술)

  • 이승우;송준엽;강재훈;황주호;이현용;박화영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1014-1017
    • /
    • 2000
  • Reliability engineering is regarded as the major and important roll for all industry. And advanced manufacturing systems with high speed and intelligent have been developed for the betterment of machining ability. In this study, we have systemized evaluation of reliability for machinery system. We proposed the reliability assessment and design review method using analyzing critical units of high speed and intelligent machine system. In addition, we have not only designed and developed test bed system for acquiring reliability data, but also have constructing WEB system for suppling reliability which is provided in design phase. From this study, we will expect to guide and introduce the reliability engineering in developing and processing phase of high quality product.

  • PDF