• 제목/요약/키워드: Machining Errors

검색결과 232건 처리시간 0.025초

볼 엔드밀에 의한 정밀 가공에 관한 연구 (A stydy on the precision machining in ball end milling system)

  • 양민양;심충건
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.50-64
    • /
    • 1994
  • Cutter deflections in the ball-end milling process is one of the main causes of the machining errors on a free-form surface. In order to avoid machining errors in this process, a methodology avoiding these machining errors on the free-form surfaces has been developed. In this method, feedrates in the finish cuts are adjusted for the prevention of machining errors. A model for the prediction of machining errors on the free-form surface is analytically derived as a function of feed and normal vector at the surface of contact point by the cutter. This model is applied to the dertermination of the adjusted feedrates which satisfy the machining tolerance of the surface. In the finish cuts of a simple curved surface, the suggested model is examined by the measurements of the generated machining error on this surface. And also, this surface is machined with the adjusted feedrates for the given machining tolerance. The measured machining errors on this surface are compared with the given tolerance. In this comparisons, it is shown that the predicted errors are fairly good agreement with the test results.

  • PDF

기상측정시스템과 오차보정을 이용한 가공정밀도 향상 (Machining Accuracy Improvement by On Machine Part Measurement and Error Compensation)

  • 최진필;민병권;이상조
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.34-41
    • /
    • 2003
  • This paper suggests a methodology fur improving the machining accuracy by compensating for the machining errors based on on-machine measurement process. Probing errors and machine tool errors included in the measurement data were calibrated or compensated to obtain the actual machining errors. Machine tool errors were modeled in forward and backward directions according to the axis movement direction to consider the effects of backlash errors on the measurement data, and model parameters were determined by measuring a cube array artifact. A rectangular workpiece was machined and then measured with a touch probe as a verification experiment. Machining experiments showed that the machining errors were reduced to within the designated tolerance after compensating for the actual machining errors by modifying the original footpath for the next-step machining.

마이크로 엔드밀링에서 공구변형 가공오차 보상에 관한 연구 (A Study on Compensation for tool deformation machining errors in micro end-milling)

  • 손종인;송병욱
    • Design & Manufacturing
    • /
    • 제17권4호
    • /
    • pp.24-32
    • /
    • 2023
  • In this study, we introduce research aimed at minimizing machining errors without compromising productivity by compensating for the machining errors caused by tool deformation. Our approach experimentally establishes the direct correlation between cutting depth and machining error, and creates predictive models using mathematical functions. This method allows for the prediction of compensated cutting depths to obtain the desired cutting profiles, thereby maximizing the compensation of machining errors in the cutting process.

고속카메라를 이용한 절삭공구변형의 보상에 관한 연구 (Compensation for Machining Error included by Tool Deflection Using High-Speed Camera)

  • 배종석;김건희;윤길상;서태일
    • 소성∙가공
    • /
    • 제16권1호
    • /
    • pp.15-19
    • /
    • 2007
  • This paper presents an integrated machining error compensation method based on captured images of tool deflection shapes in flat end-milling processes. This approach allows us to avoid modeling machining characteristics (cutting forces, tool deflections and machining errors etc.) and accumulating calculation errors induced by several simulations. For this, a high-speed camera captured images of real deformed tool shapes which were cutting under given machining conditions. Using image processes and a machining error model, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool paths. This corrected tool path can effectively reduce machining errors in the flat end-milling process. Experiments are carried out to validate the approaches proposed in this paper. The proposed error compensation method can be effectively implemented in a real machining situation, producing much smaller errors.

Measurement of the Volumetric Thermal Errors for CNC Machining Center Using the Star-type-styluses Tough Probe

  • Lee, Jae-Jong;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.111-117
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models the thermal errors for error analysis and develops an on-the-machine measurement system by which the volumetric errors are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments show that the developed system provides a high measuring accuracy, with repeatability of $\pm$2$\mu\textrm{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be also improved by using the developed measurement system when the spherical ball artifact is mounted on a modular fixture.

  • PDF

절삭가공오차보상을 위한 기상측정 데이터기반 신경회로망의 응용 (Application of Neural Network Based on On-Machine-Measurement Data for Machining Error Compensation)

  • 서태일;박균명;조명우;윤길상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.376-381
    • /
    • 2001
  • This paper presents a methodology of machining error compensation by using Artificial Neural Network(ANN) model based on the inspection database of On-Machine-Measurement(OMM) system. First, the geometric errors of the machining center and the probing errors are significantly reduced through compensation processes. Then, we acquire machining error distributions from a specimen workpiece. In order to efficiently analyze the machining errors, we define two characteristic machining error parameters. These can be modeled by using an ANN model, which allows us to determine the machining errors in the domain of considered cutting conditions. Based on this ANN model, we try to correct the tool path in order to effectively reduce the errors by using an iterative algorithm. The iterative algorithm allows us to integrate changes of the cutting conditions according to the corrected tool path. Experimentation is carried out in order to validate the approaches proposed in this paper.

  • PDF

반구상의 나선형 볼바측정을 통한 수직형 머시닝 센터의 오차 해석 및 보정 (Error Analysis and Compensation for the Volumetric Errors of a Vertical Machining Center Using Hemispherical Helix Ball Bar Test)

  • 양승한;김기훈;박용국
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.34-40
    • /
    • 2002
  • Machining accuracy is affected by quasi-static errors of machining center. Since machine errors have a direct influence upon both the surface finish and geometric shape of the finished workpiece, it is very important to measure the machine errors and to compensate these errors. The laser measurement method for identifying geometric errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the geometric errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving geometric errors using hemispherical helix ball bar test. As a result of experiment, geometric errors of the vertical machining center are compensated by 88%.

CNC공작기계의 열변형 오차보정 (II) - 알고리즘 및 시스템 인터폐이스 중심 - (Algorithm of Thermal Error Compensation for the Line Center - System Interface -)

  • 이재종;최대봉;박현구;류길상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.417-422
    • /
    • 2002
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been implemented on the machining center in order to compensate thermal error of machine tools under the real-time. The thermal errors are predicted using the neural network and multi-regression modeling methods. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

Machining Center의 2차원 원호보간정밀도 진단 System의 개발 (A development of accuracy diagnostic system 2-dimensional circular interpolation of machining centers)

  • 김정순;남궁석;제정신
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.54-65
    • /
    • 1993
  • The paper describes and alternative method based on a new idea to measure the circular movement of machining centers. ISO has employed three testing methods for the acceptance tests of machine tools; the first is a rotating one-dimensional probe method, the second is a two-dimensional probe and a master circular ring, and the third is a kinematic ball bar. The last two methods were proposed and introduced by W. Knapp and J. B. Bryan, respectively. The newly developed method is superior to above two methods; the rotating angle can be detected and the rotating radius is variable. Circular movement errors of machining centers were investigated by the analysis of data measured by R- .THETA. method. Followint observations are obtained 1) The errors which depend on positions, i.e., periodical errors by the pitch of ball screws, errors by compensation of backlash and errors by perpendicularity of X and Y-axis, were analyzed. 2) The errors which depend on NC control system, i.e., errors by the unbalance of position-loop-gaians, errors by velocity-loop-gains and errors by feed speeds, were quantiatively analyzed. 3) The method of extracting error information, which uses moving technique of averaging angle and fourier's analysis data mesured by the R- .THETA. method, was proposed.

  • PDF

Experimental Verification on the Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.62-68
    • /
    • 2004
  • Effectiveness of a corrective machining algorithm, which can construct the proper machining information to improve motion errors utilizing measured motion errors, is verified experimentally in this paper, Corrective machining process is practically applied to single and double side hydrostatic bearing tables. Lapping process is applied as a machining method. The machining information is obtained from the measured motion errors by applying the algorithm, without any information on the rail profile. In the case of the single-side table, after 3 times of corrective remachining, linear and angular motion errors are improved up to 0.13 $\mu\textrm{m}$ and 1.40 arcsec from initial error of 1.04 $\mu\textrm{m}$ and 22.71 arcsec, respectively. In the case of the double-side table, linear and angular motion error are improved up to 0.07 /$\mu\textrm{m}$ and 1.42 arcsec from the initial error of 0.32 $\mu\textrm{m}$ and 4.14 arcsec. The practical machining process is performed by an unskilled person after he received a preliminary training in machining. Experimental results show that the corrective machining algorithm is very effective and easy to use to improve the accuracy of hydrostatic tables.