• 제목/요약/키워드: Machining Conditions

검색결과 913건 처리시간 0.03초

미세 전해 구멍 가공에서의 가긍 조건에 따른 가공 간극 변화 특성 (Effect of Machining Conditions on machining gap in Micro Electrochemical Drilling)

  • 김보현;박병진;주종남
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.163-169
    • /
    • 2005
  • Micro hole is ode of basic elements for micro device or micro parts. Micro electrochemical machining (ECM) can be applied to the machining of micro holes less than 50 ${\mu}m$ in diameter, which it is not easy to apply other techniques to. For the machining of passivating metals such as stainless steel, machining conditions should be chosen carefully to prevent a passive layer. The machining conditions also affect the machining resolution, In this paper, machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel.

연질재료의 최적 절삭조건설정에 관한 연구 (A Study on the Optimal Cutting conditions for Mild Materials)

  • 최상련
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.112-118
    • /
    • 1999
  • Aluminum alloy, which is advantageous to machining and injection, makes a great contribution to shortening in delivery time, infection cycle time and reducing expense. This study presents machining conditions for mild materials and describes the difference between theoretical and practical machined surface roughnesses affected by various machining conditions. Machining results have been evaluated and analyzed under varying machining conditions. Special properties of the mild materials have been presented by the quantitative analysis and the optimal machining condition has been proposed for the mild materials.

  • PDF

3D 프린팅 복합소재의 가공에서 가공 조건 선정을 위한 머신러닝 개발에 관한 연구 (Development of Machine Learning Method for Selection of Machining Conditions in Machining of 3D Printed Composite Material)

  • 김민재;김동현;이춘만
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.137-143
    • /
    • 2022
  • Composite materials, being light-weight and of high mechanical strength, are increasingly used in various industries such as the aerospace, automobile, sporting-goods manufacturing, and ship-building industries. Recently, manufacturing of composite materials using 3D printers has increased. 3D-printed composite materials are made in free-form and adapted for end-use by adjusting the fiber content and orientation. However, research on the machining of 3D printed composite materials is limited. The aim of this study is to develop a machine learning method to select machining conditions for machining of 3D-printed composite materials. The composite material was composed of Onyx and carbon fibers and stacked sequentially. The experiments were performed using the following machining conditions: spindle speed, feed rate, depth of cut, and machining direction. Cutting forces of the different machining conditions were measured by milling the composite materials. PCA, a method of machine learning, was developed to select the machining conditions and will be used in subsequent experiments under various machining conditions.

방전가공을 이용한 미세구멍 가공 시 절연액, 축전용량과 초음파 부가에 따른 가공특성 (Machining Characteristics of Micro-EDMed Holes According to Dielectric Fluid, Capacitance and Ultrasonic Vibrations)

  • 서동우;이상민;주종남;박민수
    • 한국정밀공학회지
    • /
    • 제24권12호
    • /
    • pp.42-49
    • /
    • 2007
  • When micro holes are machined by EDM, machining characteristics of machined holes are changed according to the machining conditions. Typical machining conditions are the kind of dielectric fluids, capacitance and ultrasonic vibrations. They influence electrode wear, machining time, radial clearance and taper angle. In this paper, machined holes whose depths are 300, 500, $1000\;{\mu}m$ are observed for each machining conditions. Using deionized water as a dielectric fluid makes electrode wear small, machining time short, radial clearance large and taper angle small. High capacitance makes electrode wear high. Ultrasonic vibrations make electrode wear large, machining time short, radial clearance small and taper angle small. From the results of experiments, the optimal machining conditions were obtained to machine highly qualified micro holes.

마이크로 앤드밀의 가공특성분석 및 응용가공 연구 (Micro End-Mill Machining Characters and its Applications)

  • 제태진;이응숙;최두선;홍성민;이종찬;최환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.589-592
    • /
    • 2003
  • In the machining process of micros shape by using high-precision machining system and micro end-mill, it is important for machining characters of tools to be grasped in order to stably use tools of micro end-mill. In this study. we carried out an analytical experiment of basic machining features by using end-mill tools for the purpose of damage prevention and manufacture of high quality when the tools of micro end-mill are used. This experiment used a micro machining system with high precision and a variety of end-mill tools commercialized from tens to hundreds microns in diameter. To establish an optimal machining condition without tool damage, cutting force was analyzed according to the changes of tool diameter and cutting conditions such as cutting speed. feed rate, depth of cut. And an examination was performed for the shape and surface illumination of machining surface according to the changes of machining conditions. Based on these micro machining conditions, micro square pillar, cylinder shaft. thin wall with high aspect ratio, and micro 3-D structures such as micro gear and fan were manufactured.

  • PDF

환경영향을 최소화한 비전 시스템을 이용한 미세공구의 상태 감시 기술 (Tool Monitoring System using Vision System with Minimizing External Condition)

  • 김선호;백운보
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.142-147
    • /
    • 2012
  • Machining tool conditions directly affect to quality of product and productivity of manufacturing. Many researches performed for tool condition monitoring in machining process to improve quality and productivity. Conventional methods use characteristics of signal for cutting force, motor current consumption, vibration of machine tools and machining sound. Recently, diameter of machining tool is become smaller for minimizing of mechanical parts. Tool condition monitoring using conventional methods are relatively difficult because micro machining using small diameter tool has low machining load and high cutting speed. These days, the direct monitoring for tool conditions using vision system is performed actively. But, vision system is affected by external conditions such as back ground of image and illumination. In this study, minimizing technology of external conditions using distribution analysis of image data are developed in micro machining using small diameter drill and tap. The image data is gathered from vision system. Several sets of experiment results are performed to verify the characteristics of the proposed machining technology.

EPS 엔드밀 가공 시 표면 거칠기에 미치는 가공조건에 관한 연구 (A study on machining conditions on surface roughness in EPS End-milling)

  • 서금희;손민규;윤길상;고영배
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.46-50
    • /
    • 2017
  • EPS used in lost foam casting elastic modulus is extremely low. So it is necessary to derive machining conditions for effective cutting. Therefore this study were analyzed end-milling machining conditions to affecting the surface roughness of EPS foam. The machining conditions were set to depth, feed, and RPM at 3-level. And 18experimental conditions were derived using mixed orthogonal array. The most important condition for surface roughness is RPM. In addition, RPM machining condition range test that can realize surface roughness less than $10{\mu}m$ was performed. he range of RPM conditions is more than 15,000. However the range of RPM conditions is a condition that is difficult to use in actual field. In the future variance analysis and experiments are needed to derive the range of machining conditions available.

CAD/CAM 와이어 방전가공의 가공확대여유에 관한 연구 (A Study on Discharge Gap in CAD/CAM Wire Electric Discharge Machining)

  • 강상훈;박원조;배성한
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.380-384
    • /
    • 1993
  • In precision wire electrode discharge machining by CAD/CAM, it is the most important problem on machining method to determine the wire electrode offset amout from the accurate calculation of discharge gap in order to increase the machining accuracy, after fixing the main machining conditions such as machining speed, wire tension, coolant conductivity, gap vlotage. The present study shows the relationships between discharge gap and main machining conditions by means of a series of experiment concerned with the gap using the workpiece of STD 11, and suggests the experimental eguation to calculate the accurate wire electrode offset amount under the given machining conditions for spot workers.

볼엔드밀 절삭에서 전해복합에 의한 절삭력 저감 특성 (Cutting Force Reduction Characteristics by Compounding Electrolytic Machining in Ball End Milling)

  • 이영표;박규열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.268-273
    • /
    • 2000
  • In this report, a new method compounding the electrolytic machining with ball end milling process to increase the machining efficiency was introduced. And the cutting characteristics by electrolytic machining conditions was examined. From the experimental results, it was confirm-ed that effect of cutting force reduction obtained at the condition of transpassive state of electrolytic machining conditions.

  • PDF

미세 전해 구멍 가공에서의 가공 특성과 시뮬레이션 (Machining Characteristics in Micro Electrochemical Drilling and Simulation)

  • 김보현;이영수;최덕기;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1202-1205
    • /
    • 2005
  • Micro hole is one of basic elements for micro device or micro parts. By micro ECM, micro holes less than $50\mu{m}$ in diameter can be machined easily. Machining characteristics of micro ECM were investigated according to machining conditions such as electrolyte concentration and pulse conditions. From the investigation, optimal machining conditions were suggested for micro ECM of stainless steel. For the micro machining with high resolution, the change of machining gap should be predicted. By using electrochemical principle equations, the change of machining gap was simulated.

  • PDF