• Title/Summary/Keyword: Machining Characteristics

Search Result 1,093, Processing Time 0.025 seconds

A study on the Micro Surface Electrochemical Machining for Aluminum Alloy (알루미늄에 대한 미세 표면 전해가공에 관한 연구)

  • 백승엽;이은상;원찬희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.214-217
    • /
    • 2002
  • Micro Surface Electrochemical Machining has traditionally been used in highly specialized fields such as those of the aerospace and defense industries. It is now increasingly being applied in other industries where parts with difficult-to-cut material, complex geometry and tribology such as compute. hard disk drive(HDD) are required. Pulse Electrochemical Micro-machining provides an economical and effective method for machining high strength, high tension, heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. Usually aluminum alloys are used bearings to hard disk drive in computer. In order to apply aluminum alloys to bearing used in hard disk drive, this paper presents the characteristics of Micro Surface Electrochemical machining for aluminum alloy.

  • PDF

Optimization of Nano Machining Parameters Using Acoustic Emission and the Taguchi Method (음향방출과 다구찌 방법을 이용한 나노머시닝 가공조건의 최적화)

  • 이성환;손정무
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.163-170
    • /
    • 2004
  • Atomic force microscope (AFM) techniques are increasingly used fur tribological studies of engineering surfaces at scales ranging from atomic and molecular to micro-scale. Recently, AFM with suitable tips is being used for nano fabrication/nano machining purposes. In this paper, machining characteristics of silicon were investigated by nano indentation and nano scratch. Nano-scale material removal mechanisms are studied and the Taguchi method was introduced to acquire optimum parameters for nano machining. Also, Acoustic Emission (AR) is used for the monitoring of nano machining.

Fabrication of 3D Micro Structure Using Micro Electrical Discharge Milling (마이크로 방전 밀링을 이용한 미세 구조물 제작)

  • 이병욱;이상민;김보현;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.41-47
    • /
    • 2004
  • As mechanical structures are minimized, the demand on micro dies and molds has increased. Machining complex 3D shapes requires fabrication procedures for preparing the electrodes. Micro electrical discharge milling using a simple shape electrode can produce 3D micro structure. In this paper the machining characteristics of micro electrical discharge milling according to depth of cut and capacitance are investigated. The machining time is diminished when simple tool-paths and algorithms for changing the feedrate are applied. But a distorted bottom shape and a tapered wall shape are inevitable after machining. The distorted bottom shape and the taper angle of wall are reduced by finish machining.

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

A Study on the Electrochemical Micro-machining for Fabrication of Micro Grooves (미세 홈 형성을 위한 마이크로 전해가공에 관한 연구)

  • Park, Jeong-Woo;Lee, Eun-Sang;Moon, Young-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.101-108
    • /
    • 2002
  • A specially-built EMM (Electrochemical Micro Machining) / PECM (Pulse Electrochemical Machining) cell, a electrode tool filled with non-conducting material, a electrolyte flow control system and a small & stable gap control unit are developed to achieve accurate dimensions of recesses. Two electrolytes, aqueous sodium nitrate and aqueous sodium chloridc arc applied in this study. The farmer electrolyte has better machine-ability than the latter one because of its appropriate changing to the transpassive state without pits on the surface of workpiece. It is easier to control the machining depth precisely by micrometer with pulse current than direct current. This paper also presents an identification method for the machining depth by in-process analysis of machining current and inter electrode gap size. The inter electrode gap characteristics, inc1uding pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analyzed based on the model and experiments.

Machining characteristics on ultrasonic vibration assisted micro-electrical discharge machining of carbon-nanotube reinforced conductive Al2O3 composite (전도성을 가지는 탄소나노튜브강화 알루미나복합소재의 마이크로방전가공에서 초음파진동 부가에 의한 가공특성)

  • Kang, Myung-Chang;Tak, Hyun-Seok;Lee, Chang-Hoon;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.119-126
    • /
    • 2014
  • Micro-holes of conductive ceramic are required in micro structures. Micro-electrical discharge machining (Micro-EDM) is an effective machining method since EDM is as process for shaping hard metals and complex-shaped holes by spark erosion in all kinds of electro-conductive materials. However, as the depth of micro hole increases, the machining condition becomes more unstable due to inefficient removal of debris between the electrode and the workpiece. In this paper, micro-EDM was performed to evaluate machining characteristic such as electrode wear, machining time, taper angle, radial clearance with varying voltage and ultrasonic vibration on 10 vol.% Carbon-nanotube reinforced conductive $Al_2O_3$ composite fabricated by spark plasma sintering in previous research.

Five-axis Machining Characteristics of Titanium Alloy Forging Shape (티타늄합금 단조 형상의 5축 가공 특성에 관한 연구)

  • Jung, Hong-Il;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.92-99
    • /
    • 2022
  • Owing to the excellent corrosion resistance of titanium alloys, they are widely used as materials for aircraft components. However, in terms of machining, dimensional deformation methods vary significantly, such as forging, owing to their difficult-to-cut property and the uncontrollable vibration generated during machining. A method to minimize the vibration generated during machining by applying advanced tools and controlling the sequence of machining processes, which can improve the machinability and precision of titanium alloy-forged low-angle components, is proposed herein. Using the proposed tool and based on a process order experiment, the efficiency of the machining process is verified by measuring the dimensional deformation of the low-angle component.

A Study on the Ultrasonic Machining Characteristics of Alumina Ceramics (알루미나 세라믹의 초음파가공 특성 연구)

  • Kang, Ik-Soo;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho;Seo, Yong-Wie
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study alumina($Al_2O_3$) was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios (abrasives water by weight) of 11, 13 and 15 with different tool shapes and applied pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 11 and static pressure of $25kg/cm^2$, maximum material removal rate of $18.97mm^3/mm$ was achieved with mesh number of 600 SiC abrasives and static pressure of $30kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

  • PDF

Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy (초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향)

  • Park, Jae-Nam;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.

An Evaluation of Machining Characteristics in Micro-scale Milling Process by Finite Element Analysis and Machining Experiment (유한요소해석과 가공실험을 통한 마이크로 밀링가공의 가공특성평가)

  • Ku, Min-Su;Kim, Jeong-Suk;Kim, Pyeoung-Ho;Park, Jin-Hyo;Kang, Ik-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.101-107
    • /
    • 2011
  • Analytical solution of micro-scale milling process is presented in order to suggest available machining conditions. The size effect should be considered to determine cutting characteristics in micro-scale cutting. The feed per tooth is the most dominant cutting parameter related to the size effect in micro-scale milling process. In order to determine the feed per tooth at which chips can be formed, the finite element method is used. The finite element method is employed by utilizing the Johnson-Cook (JC) model as a constitutive model of work material flow stress. Machining experiments are performed to validate the simulation results by using a micro-machining stage. The validation is conducted by observing cutting force signals from a cutting tool and the conditions of the machined surface of the workpiece.