• Title/Summary/Keyword: Machinery products

Search Result 434, Processing Time 0.029 seconds

A HACCP model for By-products feed production

  • Dooyum, Uyeh Daniel;Woo, Seung Min;Kim, Jun Hee;Lee, Dong Hyun;Ha, Yu Shin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.136-136
    • /
    • 2017
  • By-products has been considered lately in Total Mixed Ration (TMR) as an alternative to livestock feed around the world. This is due to the high cost of using forage as feed, less expense in exploring by-products of agriculture origin and environmental concerns with their disposal. However, by-products usually contain contaminants and the production process requires fermentation using a storage and fermentation tank. Animal feed is the start point of the food safety chain in the 'farm-to-fork' model. This necessitated a study to model a protocol that will culminate to safe feed production. Hazard analysis and critical control points (HACCP), a systematic preventive approach to food safety from biological, chemical and physical hazards in production processes that can cause the finished product to be unsafe was explored. Implementation of this model provides a mechanism that ensures product safety is continuously achieved. The entire production process of By-products feed production was evaluated using HACCP wizard software. This includes the plant layout, technical standards, storage and fermentation tank cleansing method, staff assignment, safety control method, and distribution. The potential biological, chemical, and physical hazards that may exist in every step of the production process were identified, and then critical control points (CCPs) were selected. This will ensure the safety of products made from livestock that consumes by-product feed. These includes cheese, milk, beef, etc.

  • PDF

Rapid Manufacturing of 3D Micro-products using UV Laser Ablation and Phase-change Filling

  • Shin Bo-Sung;Kim Jae-Gu;Chang Won-Suk;Whang Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.56-59
    • /
    • 2006
  • UV laser micromachining is generally used to create microstructures for micro-products through a sequence of lithography-based photo-patterning steps. However, the micromachining process is not suitable for rapid realization of complex 3D micro-products because it depends on worker experience. In addition, the cost and time required to make many masks are excessive. In this paper, a more effective and rapid micro-manufacturing process, which was developed based on laser micromachining, is proposed for fabricating micro-products directly using UV laser ablation and phase-change filling. The filling process is useful for holding the micro-products during the ablation step. The proposed rapid micro-manufacturing process was demonstrated experimentally by fabricating 3D micro-products from functional UV-sensitive polymers using 3D CAD data.

Imaging Technologies for Nondestructive Measurement of Internal Properties of Agricultural Products: A Review

  • Ahmed, Mohammed Raju;Yasmin, Jannat;Lee, Wang-Hee;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.199-216
    • /
    • 2017
  • Purpose: This study reviewed the major nondestructive measurement techniques used to assess internal properties of agricultural materials that significantly influence the quality, safety, and value of the products in markets. Methods: Imaging technologies are powerful nondestructive analytical tools that possess specific advantages in revealing the internal properties of products. Results: This review was exploring the application of various imaging techniques, specifically, hyperspectral imaging (HSI), magnetic resonance imaging (MRI), soft X-ray, X-ray computed tomography (XRI-CT), thermal imaging (TI), and ultrasound imaging (UI), to investigate the internal properties of agricultural commodities. Conclusions: The basic instruments used in these techniques are discussed in the initial part of the review. In the context of an investigation of the internal properties of agricultural products, including crops, fruits, vegetables, poultry, meat, fish, and seeds, various extant studies are examined to understand the potential of these imaging technologies. Future trends for these imaging techniques are also presented.

Drying Characteristics of Agricultural Products under Different Drying Methods: A Review

  • Lee, Seung Hyun;Park, Jeong Gil;Lee, Dong Young;Kandpal, Lalit Mohan;Cho, Byoung-Kwan;Hong, Soon-jung;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.389-395
    • /
    • 2016
  • Purpose: Drying is one of the most widely used methods for preserving agricultural products or food. The main purpose of drying agricultural products is to reduce their water content for minimizing microbial spoilage and deterioration reaction during storage. Methods: Although numerous drying methods are successfully applied to dehydrate various agricultural products with little drying time, the final quality of dried samples in terms of appearance and shape cannot be guaranteed. Therefore, based on published literature, this review was conducted to study the drying characteristics of various agricultural products when different drying methods were applied. Results: An increase in the drying power of sources-for example, increase in hot air temperature or velocity, infrared or microwave power-and the combination of drying power levels can reduce the drying time of various agricultural products. In addition, energy efficiency in drying significantly relies on the compositions of the dried samples and drying conditions. Conclusions: The drying power source is the key factor to control entire drying process of different samples and final product quality. In addition, an appropriate drying method should be selected depending on the compositions of the agricultural products.

Analysis of Technical Trend of Electric Agricultural Field Machinery

  • Kim, Yong Joo;Kim, Wan Su;Chung, Sun Ok;Lee, Dae Hyun
    • Agribusiness and Information Management
    • /
    • v.6 no.2
    • /
    • pp.40-48
    • /
    • 2014
  • As basic research to develop HEV and EV agricultural field machinery, the present study analyzes the technical trend of electric agricultural field machinery through product analysis, paper analysis, and patent analysis concerning HEV and EV in the automobile, construction machinery, and agricultural machinery sectors. For product analysis, the homepages of companies in these sectors were consulted to analyze the number of products of each company. For paper analysis, key words related to HEV and EV were selected, a search formula was drawn up, and articles search sites were consulted. And for patent analysis too, key words were selected and then a search formula was drawn up to examine published patent applications or registered patent applications, and trends were analyzed by structure, country, and year. The number of HEV and EV products were 17 in the automobile area, 8 in construction machinery, and 4 in agricultural machinery. Notably, in the agricultural machinery area, all HEV and EV products were from advanced companies overseas. In terms of papers, papers published in the past 5 years were searched and 33,195 papers were from the automobile area, 3,806 were from construction machinery, and 2,687, the fewest papers, were from the agricultural machinery area. A search of patents in the electric drive technology area in Korea, USA, and Japan, and Europe showed 1,927 valid patents, with 1,120 in Japan, 497 in USA, 193 in Korea, and 117 in Europe. Analysis of the trend of research on electric agricultural field machinery by product, paper, and patent shows the development of HEV and EV technology in Korea is insufficient compared to USA, Japan, and Europe, which means rapid technological development is needed.

Analysis of mechanical properties of agricultural products for development of a multipurpose vegetable cutting machine

  • Park, Jeong Gil;Jung, Hyun Mo;Kang, Bum Seok;Mun, Seong Kyu;Lee, Seung Hun;Lee, Seung Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.432-440
    • /
    • 2016
  • The consumption of pre-treated vegetables (including fresh-cut vegetables) that are washed, peeled, and trimmed has been significantly increased because of their easy use for cooking. Vegetable cutting machines have been widely utilized for producing fresh-cut vegetables or agricultural products of different sizes; however, the design standard is not established for specific types of agricultural products. Therefore, this study was conducted to determine mechanical properties (compressive and shear forces) of targeted agricultural products (radish, carrot, squash, cucumber, shiitake mushroom, and sweet potato) for developing a multipurpose vegetable cutting machine. According to ASAE standard (s368.3), compressive and shear forces of targeted agricultural products were measured by using a custom built UTM (universal testing machine). Shape type of samples and speed ranges (5 - 15 mm/min) of loading rate on bioyield and shear points varied depending on the targeted agricultural product. The range of averaged bioyield points of targeted agricultural products were between 7.89 and 146.98 N. On the other hand, their averaged shear points ranged from 22.50 to 53.47 N. Results clearly showed that the bioyield and shear points of targeted agricultural products were thoroughly affected by their components. As measuring compressive and shear forces of a variety of agricultural products, it will be feasible to calculate blade cutting force for designing multipurpose vegetable cutting machine.