• 제목/요약/키워드: MachineLearning

검색결과 5,612건 처리시간 0.033초

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론 (A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation)

  • 김형수;홍승우
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.111-126
    • /
    • 2020
  • CRM의 하위 연구 분야로 진행되었던 고객이탈예측은 최근 비즈니스 머신러닝 기술의 발전으로 인해 빅데이터 기반의 퍼포먼스 마케팅 주제로 더욱 그 중요도가 높아지고 있다. 그러나, 기존의 관련 연구는 예측 모형 자체의 성능을 개선시키는 것이 주요 목적이었으며, 전체적인 고객이탈예측 프로세스를 개선하고자 하는 연구는 상대적으로 부족했다. 본 연구는 성공적인 고객이탈관리가 모형 자체의 성능보다는 전체 프로세스의 개선을 통해 더 잘 이루어질 수 있다는 가정하에, 이차원 고객충성도 세그먼트 기반의 고객이탈예측 프로세스 (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation)를 제안한다. CCP/2DL은 양방향, 즉 양적 및 질적 로열티 기반의 고객세분화를 시행하고, 고객세그먼트들을 이탈패턴에 따라 2차 그룹핑을 실시한 뒤, 이탈패턴 그룹별 이질적인 이탈예측 모형을 독립적으로 적용하는 일련의 이탈예측 프로세스이다. 제안한 이탈예측 프로세스의 상대적 우수성을 평가하기 위해 기존의 범용이탈예측 프로세스와 클러스터링 기반 이탈예측 프로세스와의 성능 비교를 수행하였다. 글로벌 NGO 단체인 A사의 협력으로 후원자 데이터를 활용한 분석과 검증을 수행했으며, 제안한 CCP/2DL의 성능이 다른 이탈예측 방법론보다 우수한 성능을 보이는 것으로 나타났다. 이러한 이탈예측 프로세스는 이탈예측에도 효과적일 뿐만 아니라, 다양한 고객통찰력을 확보하고, 관련된 다른 퍼포먼스 마케팅 활동을 수행할 수 있는 전략적 기반이 될 수 있다는 점에서 연구의 의의를 찾을 수 있다.

AdaBoost를 이용한 윈도우 영상의 하위 영상 검출 (Subimage Detection of Window Image Using AdaBoost)

  • 길종인;김만배
    • 방송공학회논문지
    • /
    • 제19권5호
    • /
    • pp.578-589
    • /
    • 2014
  • 윈도우 영상은 흔히 컴퓨터에서 응용프로그램을 실행하였을 때, 모니터를 통해 출력되는 화면을 의미하여, 웹페이지, 동영상 플레이어 및 여러 가지 응용프로그램을 모두 포함한다. 웹페이지는 다른 어플리케이션에 비해 다양한 종류의 정보를 다양한 형태로 전달한다. 이러한 웹페이지와 같은 윈도우 영상은 카메라로부터 획득할 수 있는 자연영상과 달리 텍스트, 로고, 아이콘 및 하위 영상과 같은 여러 가지 요소들을 포함하고 있고, 각 요소들은 서로 다른 형식의 정보를 사용자에게 전달한다. 그러나 텍스트와 영상은 정보가 다른 형태로 제공되기 때문에, 엄연히 다른 특성을 가지고 있는 요소들을 지역적으로 분리할 필요성이 있다. 본 논문에서는 윈도우 영상을 지역적인 특성에 따라 다수의 블록으로 분할한 후, 분할된 각 영역을 배경, 텍스트, 하위영상으로 분류하였다. 이러한 분류기법을 통해 분류된 하위 영상은 3D입체영상 변환, 영상 검색, 영상 브라우징등과 같은 응용을 가질 수 있다. 영상을 분류하는 방법에는 여러 가지가 존재할 수 있으나, 본 논문에서는 기계학습 기반의 알고리즘이 하위 영상 검출에도 좋은 접근법이 될 수 있음을 증명하기 위해 AdaBoost를 이용하였고, 실험결과로부터 93.4%의 검출률, 13%의 거짓 긍정률을 보임으로서, 이를 입증하였다.

스마트 기기의 멀티 모달 로그 데이터를 이용한 사용자 성별 예측 기법 연구 (A Study on Method for User Gender Prediction Using Multi-Modal Smart Device Log Data)

  • 김윤정;최예림;김소이;박규연;박종헌
    • 한국전자거래학회지
    • /
    • 제21권1호
    • /
    • pp.147-163
    • /
    • 2016
  • 스마트 기기 사용자의 성별 정보는 성공적인 개인화 서비스를 위해 중요하며, 스마트 기기로부터 수집된 멀티 모달 로그 데이터는 사용자의 성별 예측에 중요한 근거가 된다. 하지만 각 멀티 모달 데이터의 특성에 따라 다른 방식으로 성별 예측을 수행해야 한다. 따라서 본 연구에서는 스마트 기기로부터 발생한 로그 데이터 중 텍스트, 어플리케이션, 가속도 데이터에 기반한 각기 다른 분류기의 예측 결과를 다수결 방식으로 앙상블하여 최종 성별을 예측하는 기법을 제안한다. 텍스트 데이터를 이용한 분류기는 데이터 유출에 의한 사생활 침해 문제를 최소화하기 위해 웹 문서로부터 각 성별의 특징적 단어 집합을 도출하고 이를 기기로 전송하여 사용자의 기기 내에서 성별 분류를 수행한다. 어플리케이션 데이터에 기반한 분류기는 사용자가 실행한 어플리케이션들에 성별을 부여하고 높은 비율을 차지하는 성별로 사용자의 성별을 예측한다. 가속도 기반 분류기는 성별에 따른 사용자의 가속도 데이터 인스턴스를 학습한 SVM 모델을 사용하여 주어진 성별을 분류한다. 자체 제작한 안드로이드 어플리케이션을 통해 수집된 실제 스마트 기기 로그 데이터를 사용하여 제안하는 기법을 평가하였으며 그 결과 높은 예측 성능을 보였다.

데이터마이닝 기법을 이용한 상수도 시스템 내의 탁도 예측모형 개발에 관한 연구 (A Study on the Turbidity Estimation Model Using Data Mining Techniques in the Water Supply System)

  • 박노석;김순호;이영주;윤석민
    • 대한환경공학회지
    • /
    • 제38권2호
    • /
    • pp.87-95
    • /
    • 2016
  • 탁도는 송 배수 관로의 부식 등에 의해 발생되는 것으로 알려진 'Discolored Water'현상을 수용가의 물 사용자가 인지할 수 있는 주요 지표로서 활용되고 있다. 즉, 'Discolored Water'는 수돗물 사용자가 육안으로 인지할 수 있는 정도의 탁도를 가진 상태로 정의할 수 있으며, 사용자는 수돗물에 존재하는 불특정의 용존 물질보다는 미세한 입자들에 대한 시각적인 인지인 탁도를 통해서 'Discolored Water'를 인식하게 된다. 이에 본 연구에서는 실제 국내 상수도 시스템 내에서 관측된 다항목의 수질데이터(탁도, pH 및 잔류염소)를 대상으로 하여 탁도 이외의 수질데이터들을 예측모형의 설명변수로 설정한 후 데이터 마이닝 기법(data mining)을 통해 기계학습(machine learning)을 수행하여, 상수도 시스템 내에서의 탁도 변화를 예측하는 모형을 수립하고자 하였다. 수집된 수질 데이터를 대상으로 데이터 마이닝 기법인 Decision Tree를 이용해 탁도 예측모형을 구축한 결과 pH 및 잔류염소를 설명변수로 적용한 모형이 가장 높은 예측결과를 나타내었다. 하지만 예측모형들은 peak 관측치에 대해서는 예측오차가 다소 증가하였는데 이를 보완하기 위해 고주파통과필터를 이용한 전처리 과정을 적용하였다. 그 결과 탁도 데이터의 시계열변화 및 peak 관측치에 대한 예측오차가 감소하는 것으로 나타났다.

보편적 빅데이터와 빅데이터 교육의 방향성 연구 - 빅데이터 전문가의 인식 조사를 기반으로 (Study on the Direction of Universal Big Data and Big Data Education-Based on the Survey of Big Data Experts)

  • 박윤수;이수진
    • 정보교육학회논문지
    • /
    • 제24권2호
    • /
    • pp.201-214
    • /
    • 2020
  • 최근 데이터 관련 법안이 개정되면서 빅데이터의 활용 분야는 점차 확장되고 있으며, 빅데이터 교육에 대한 관심이 증가하고 있다. 그러나 빅데이터를 활용하기 위해서는 높은 수준의 지식과 스킬이 필요하고, 이를 모두 교육하기에는 오랜 시간과 많은 비용이 소요된다. 이에 본 연구를 통해 산업 현장에서 사용되는 광범위한 영역의 빅데이터를 보편적 빅데이터(Universal Big Data)로 정의하고, 대학교 수준에서 보편적 빅데이터를 교육하기 위해서 중점적으로 교육해야 할 지식 영역을 산출하고자 한다. 이를 위해 빅데이터 관련 산업에 종사하는 전문인력을 구분하기 위한 기준을 마련하고, 설문 조사를 통해 빅데이터에 대한 인식을 조사했다. 조사 결과에 의하면 전문가들은 컴퓨터과학에서 의미하는 빅데이터보다 광범위한 범위의 데이터를 빅데이터로 인식하고 있었으며, 빅데이터의 가공 과정에 반드시 빅데이터 처리 프레임워크 또는 고성능 컴퓨터가 필요한 것은 아니라고 인식하고 있었다. 이는 빅데이터를 교육하기 위해서는 컴퓨터과학(공학)적 지식과 스킬보다는 빅데이터의 분석 방법과 응용 방법을 중심으로 교육해야 한다는 것을 의미한다. 분석 결과를 바탕으로 본 논문에서는 보편적 빅데이터 교육을 위한 새로운 패러다임을 제안하고자 한다.

한국 인플루엔자 의사환자 단기 예측 모형 개발: 주간 ILI 감시 자료와 웹 검색 정보의 활용 (Short-term Predictive Models for Influenza-like Illness in Korea: Using Weekly ILI Surveillance Data and Web Search Queries)

  • 정재운
    • 디지털융복합연구
    • /
    • 제16권9호
    • /
    • pp.147-157
    • /
    • 2018
  • 구글의 인플루엔자 의사환자(ILI) 예측 서비스 시작 이래로 웹 검색 정보를 활용한 ILI 예측 연구들이 급속도로 확산되고 있는 가운데, 본 연구는 ILI 자료와 웹 검색 정보를 활용한 한국 ILI 단기 예측 모형을 개발해 성능을 평가해 보고자 한다. 한국에 특화된 ILI 예측 모형 개발을 위해 한국질병관리본부의 ILI 감시 자료와 구글 및 네이버의 한국어 검색정보를 ARIMA 모형과 함께 사용하였다. 모형1은 ILI 자료만 사용하였으며, 모형 2와 3은 모형1에 구글과 네이버의 검색자료를 각각 추가하였다. 모형4는 모형 2와 3의 공통 검색어를 모형1에 추가하였다. 모형 훈련기간 동안 모든 예측모형들이 95%($R^2$) 이상의 높은 적합도를 보였으며, 예측기간 1과 2에서 모형1이 가장 우수한 예측력(99.98%, 96.94%)을 보였다. 모형 3(a)와 4(b, c)는 전체 예측기간에서 90% 이상의 안정적인 예측력을 보였지만, 모형1의 성능에는 미치지 못하였다. 본 연구에서 정확하고 안정적인 예측력을 보인 모형들은 성능개선에 관한 보완적 연구와 더불어 국내 인플루엔자 유행 조기경보시스템에 활용 가능하다.

자료기반 학습 알고리즘을 이용한 지하수위 변동 예측 모델의 국가지하수관측망 자료 적용에 대한 비교 평가 연구 (Application of groundwater-level prediction models using data-based learning algorithms to National Groundwater Monitoring Network data)

  • 윤희성;김용철;하규철;김규범
    • 지질공학
    • /
    • 제23권2호
    • /
    • pp.137-147
    • /
    • 2013
  • 지하수자원의 효율적인 관리를 위해 강우에 대한 지하수위 변화를 예측하는 것은 중요한 문제이다. 본 연구에서는 자료기반 학습 알고리즘인 인공신경망과 지지벡터기계를 이용하여 시계열 예측 모델을 만들고 이를 국가지하수관측망 중 가산, 신광, 청성 관측소 지하수위 변화 예측에 적용하였다. 모델의 입력 성분 구성 방법에 따라 네 가지 모형을 설정하고 각 관측소 및 모델 별 예측 결과를 비교 평가하였다. 강우 입력 모형의 경우 지하수위 감쇠 및 기저 변화 예측을 위해 큰 규모의 입력 성분 구성이 필요하지만 강우 및 지하수위 입력 모형은 보다 작은 규모의 입력 성분으로 효과적으로 지하수위 변화를 예측하는 것으로 나타났다. 강우 및 지하수위 입력 모형의 활용성 증대를 위해 고안된 반복 예측 모형의 경우 관측값과 예측값 사이에 0.75~0.95의 상관계수를 보여 적용 가능성이 큰 것으로 판단된다. 전체적으로 강우-지하수위 교차상관계수가 낮은 신광 관측소의 예측 오차가 크게 나타났고 ANN 모델에 비해 SVM의 예측력이 다소 높은 것으로 조사되었다. 또한 반복 예측 모형의 모델 파라미터 선정 과정에서 보정 단계 오차에 대한 예측 단계 오차의 비의 분포를 조사한 결과 SVM의 경우가 더 작게 나타나 SVM이 본 연구 자료에 대해 보다 안정적이고 효율적인 모델임을 평가하였다.

특징집합 IG-MLP 평가 기반의 최적화된 특징선택 방법을 이용한 질환 예측 머신러닝 모델 (Optimized Feature Selection using Feature Subset IG-MLP Evaluation based Machine Learning Model for Disease Prediction)

  • 김경륜;김재권;이종식
    • 한국시뮬레이션학회논문지
    • /
    • 제29권1호
    • /
    • pp.11-21
    • /
    • 2020
  • 암을 제외한 한국인의 가장 높은 사망원인은 심뇌혈관질환으로 사망원인의 24%를 차지한다. 현재 국내 환자의 심혈관질환의 위험도 산출은 프레밍험 위험지수를 기반으로 하지만, 국외의 가이드라인에 의존하고 있어 정확도가 떨어지는 편이며, 뇌혈관질환의 예측에 대한 위험도는 산출할 수 없다. 심뇌혈관질환은 예방을 위한 조기증상들의 특징 분석이 어려워 질환예측이 힘들며, 한국인에 적합한 예측 방법이 필요하다. 본 연구의 목적은 심뇌혈관질환 데이터를 이용하여, 특징집합 IG-MLP 평가 기반의 특징선택 방법론을 시뮬레이션 하여 검증하는 것이다. 제안하는 방법은 제4~7기 국민건강영양조사 원시자료를 이용한다. 심뇌혈관질환의 예측에 중요한 특징들을 선별하기 위해, 속성들의 심뇌혈관질환에 대한 정보이득-다층신경망을 이용한 분석을 실시하며, 최종적으로 선별된 특징을 이용한 심뇌혈관질환 예측 모델을 제공한다. 제안하는 방법으로 한국인의 심뇌혈관질환에 관련된 중요한 특징들을 찾을 수 있으며, 최적화된 특징들로 구성된 예측 모델은 한국인에 대해 더욱 정확한 심뇌혈관 예측을 할 수 있다.