• 제목/요약/키워드: Machine-learning Feature

검색결과 732건 처리시간 0.033초

네트워크 침입 탐지를 위해 CICIDS2017 데이터셋으로 학습한 Stacked Sparse Autoencoder-DeepCNN 모델 (Stacked Sparse Autoencoder-DeepCNN Model Trained on CICIDS2017 Dataset for Network Intrusion Detection)

  • 이종화;김종욱;최미정
    • KNOM Review
    • /
    • 제24권2호
    • /
    • pp.24-34
    • /
    • 2021
  • 엣지 컴퓨팅을 사용하는 서비스 공급업체는 높은 수준의 서비스를 제공한다. 이에 따라 다양하고 중요한 정보들이 단말 장치에 저장되면서 탐지하기 더욱 어려운 최신 사이버 공격의 핵심 목표가 됐다. 보안을 위해 침입 탐지시스템과 같은 보안 시스템이 자주 활용되지만, 기존의 침입 탐지 시스템은 탐지 정확도가 낮은 문제점이 존재한다. 따라서 본 논문에서는 엣지 컴퓨팅에서 단말 장치의 더욱 정확한 침입 탐지를 위한 기계 학습 모델을 제안한다. 제안하는 모델은 희소성 제약을 사용하여 입력 데이터의 중요한 특징 벡터들을 추출하는 stacked sparse autoencoder (SSAE)와 convolutional neural network (CNN)를 결합한 하이브리드 모델이다. 최적의 모델을 찾기 위해 SSAE의 희소성 계수를 조절하면서 모델의 성능을 비교 및 분석했다. 그 결과 희소성 계수가 일 때 96.9%로 가장 높은 정확도를 보여주었다. 따라서 모델이 중요한 특징들만 학습할 경우 더 높은 성능을 얻을 수 있었다.

GCNXSS: An Attack Detection Approach for Cross-Site Scripting Based on Graph Convolutional Networks

  • Pan, Hongyu;Fang, Yong;Huang, Cheng;Guo, Wenbo;Wan, Xuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.4008-4023
    • /
    • 2022
  • Since machine learning was introduced into cross-site scripting (XSS) attack detection, many researchers have conducted related studies and achieved significant results, such as saving time and labor costs by not maintaining a rule database, which is required by traditional XSS attack detection methods. However, this topic came across some problems, such as poor generalization ability, significant false negative rate (FNR) and false positive rate (FPR). Moreover, the automatic clustering property of graph convolutional networks (GCN) has attracted the attention of researchers. In the field of natural language process (NLP), the results of graph embedding based on GCN are automatically clustered in space without any training, which means that text data can be classified just by the embedding process based on GCN. Previously, other methods required training with the help of labeled data after embedding to complete data classification. With the help of the GCN auto-clustering feature and labeled data, this research proposes an approach to detect XSS attacks (called GCNXSS) to mine the dependencies between the units that constitute an XSS payload. First, GCNXSS transforms a URL into a word homogeneous graph based on word co-occurrence relationships. Then, GCNXSS inputs the graph into the GCN model for graph embedding and gets the classification results. Experimental results show that GCNXSS achieved successful results with accuracy, precision, recall, F1-score, FNR, FPR, and predicted time scores of 99.97%, 99.75%, 99.97%, 99.86%, 0.03%, 0.03%, and 0.0461ms. Compared with existing methods, GCNXSS has a lower FNR and FPR with stronger generalization ability.

변수 선택 및 샘플링 기법을 적용한 조류 경보 단계 예측 모델의 정확도 개선 (Environmental variable selection and synthetic sampling methods for improving the accuracy of algal alert level prediction model)

  • 김진휘;이한규;변서현;신재기;박용은
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.517-517
    • /
    • 2023
  • 현재 우리나라에서는 4대강 및 주요 호소 29지점을 대상으로 조류경보제가 시행되고 있으며 조류 경보 단계는 실시간 모니터링지점에서 측정되는 유해 조류의 셀농도를 기반으로 발령 단계가 결정된다. 상수원 구간은 관심, 경계, 조류 대발생, 해제 또는 미발생 총 4구간으로 구성되며, 친수 활동 구간의 경우 조류 대발생을 제외한 3구간으로 구성된다. 현재 시행되는 조류 경보제의 목적은 유해 조류 발생 시 사후 대응 방안 마련에 보다 초점이 맞춰져 있으며 특히, 모니터링 주기 확대 여부, 오염원 관리 방안 마련, 조류 제거 여부 등의 의사 결정 수단으로 사용되고 있다. 하지만 조류 경보 단계에 대한 사전 예측이 가능한 경우 유해 조류의 성장을 억제할 수 있으며 이를 통해 안전하고 깨끗한 수자원을 확보할 수 있다. 본 연구에서는 조류 경보 단계의 사전적 예측을 위해 국가 실시간 측정망에서 제공하는 전국 보 모니터링 종합 정보 자료, 기상측정망 자료, 실시간 보 현황 자료를 활용하여 예측 모델을 구축하였다. 또한, 단계 예측의 정확도를 개선하기 위해 변수 선택 기법을 활용하여 조류 경보 단계에 영향을 미치는 환경변수를 선정하였으며 자료의 불균형으로 인해 모델 학습 과정에서 발생하는 예측 오류를 최소화하기 위해 다양한 샘플링 기법을 적용하여 모델의 성능을 평가하였다. 변수 선택 및 샘플링 기법을 고려하지 않은 원자료를 사용하여 예측 모델을 구축한 결과 관심 단계(Level-1) 및 경보 단계(Level-2)에 대해 각각 50%, 62.5%의 예측 정확도를 보인 반면 비선형 변수 선택 기법 및 Synthetic Minority Over-sampling Technique-Edited Nearrest Neighbor(SMOTE-ENN) 샘플링 기법을 적용하여 구축한 모델에서는 Level-1은 85.7%, Level-2는 75.0%의 예측 정확도를 보였다.

  • PDF

LSTM based Supply Imbalance Detection and Identification in Loaded Three Phase Induction Motors

  • Majid, Hussain;Fayaz Ahmed, Memon;Umair, Saeed;Babar, Rustum;Kelash, Kanwar;Abdul Rafay, Khatri
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.147-152
    • /
    • 2023
  • Mostly in motor fault detection the instantaneous values 3 axis vibration and 3phase current in time domain are acquired and converted to frequency domain. Vibrations are more useful in diagnosing the mechanical faults and motor current has remained more useful in electrical fault diagnosis. With having some experience and knowledge on the behavior of acquired data the electrical and mechanical faults are diagnosed through signal processing techniques or combine machine learning and signal processing techniques. In this paper, a single-layer LSTM based condition monitoring system is proposed in which the instantaneous values of three phased motor current are firstly acquired in simulated motor in in health and supply imbalance conditions in each of three stator currents. The acquired three phase current in time domain is then used to train a LSTM network, which can identify the type of fault in electrical supply of motor and phase in which the fault has occurred. Experimental results shows that the proposed single layer LSTM algorithm can identify the electrical supply faults and phase of fault with an average accuracy of 88% based on the three phase stator current as raw data without any processing or feature extraction.

Multi-classification Sensitive Image Detection Method Based on Lightweight Convolutional Neural Network

  • Yueheng Mao;Bin Song;Zhiyong Zhang;Wenhou Yang;Yu Lan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1433-1449
    • /
    • 2023
  • In recent years, the rapid development of social networks has led to a rapid increase in the amount of information available on the Internet, which contains a large amount of sensitive information related to pornography, politics, and terrorism. In the aspect of sensitive image detection, the existing machine learning algorithms are confronted with problems such as large model size, long training time, and slow detection speed when auditing and supervising. In order to detect sensitive images more accurately and quickly, this paper proposes a multiclassification sensitive image detection method based on lightweight Convolutional Neural Network. On the basis of the EfficientNet model, this method combines the Ghost Module idea of the GhostNet model and adds the SE channel attention mechanism in the Ghost Module for feature extraction training. The experimental results on the sensitive image data set constructed in this paper show that the accuracy of the proposed method in sensitive information detection is 94.46% higher than that of the similar methods. Then, the model is pruned through an ablation experiment, and the activation function is replaced by Hard-Swish, which reduces the parameters of the original model by 54.67%. Under the condition of ensuring accuracy, the detection time of a single image is reduced from 8.88ms to 6.37ms. The results of the experiment demonstrate that the method put forward has successfully enhanced the precision of identifying multi-class sensitive images, significantly decreased the number of parameters in the model, and achieved higher accuracy than comparable algorithms while using a more lightweight model design.

비지도 기계학습을 통한 유출 발생 내 이력 현상 구분 (Classification of hysteretic loop feature for runoff generation through a unsupervised machine learning algorithm)

  • 이은형;전항탁;김다홍;배시배시프라이데이;김상현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.360-360
    • /
    • 2022
  • 토양수분과 유출 간 관계를 정량화하는 것은 수문 기작 및 유출 발생 과정의 이해를 위한 중요한 정보를 제공한다. 특히, 유출과정의 특성화는 수문 사상에 따른 불포화대 내 토양수 및 토사 손실 제어와 산사태 및 비점오염원 발생 예측을 위해 필수적이다. 유출과정과 관련된 비선형성과 복잡성을 확인하기 위해 토양수분과 유출 사이의 이력 거동이 조사되었다. 특히, 수문 과정 내 이력 현상 구체화를 위해 정성적인 시각적 분류 및 정량적 평가를 위한 이력 지수들이 개발되었다. 정성적인 시각적 분류는 시간에 따라 시계 및 반시계방향으로 다중 루프 형상을 나누는 방식으로 진행되었고, 정량적 평가의 경우 이력 고리(Hysteretic loop) 내 상승 고리(Rising limb)와 하강 고리(Falling limb)의 차이를 기준으로 한 지수로 이력 현상을 특성화하였다. 이전에 제안된 방법론들은 연구자의 판단이 들어가기 때문에 보편적이지 않고 이력 현상을 개발된 지수에 맞춤에 따라 자료 손실이 나타나는 한계가 존재한다. 자료의 손실 없이 불포화대 내 발생 가능한 대표 이력 현상을 자동으로 추출하기 위해 적합한 비지도 학습기반 기계학습 방법론의 제안이 필요하다. 우리 연구에서는 국내 산지 사면에서 강우 사상 동안 다중 깊이(10, 30, 60cm)로 56개의 토양수분 측정지점에서 확보된 토양수분 시계열 자료와 산지 사면 내 위어를 통해 확보된 유출 시계열 자료를 사용하였다. 먼저, 기존에 분류 방법을 기반으로 계절 및 공간특성에 따라 지배적으로 발생하는 토양수분-유출 간 이력 현상을 특성화하였다. 다음으로, 토양수분-유출 간 이력 패턴을 자료 손실 없이 형상화하여 자동으로 데이터베이스화하는 알고리즘을 개발하였다. 마지막으로, 비지도 학습방법을 이용하여 데이터베이스화된 실제 발현 이력 현상 내 확률분포를 최대한 가깝게 추정하는 은닉층을 반복적인 재구성 학습을 통해 구현함으로써 대표 이력 현상 패턴을 추출하였다.

  • PDF

제한적 선박 정보와 무작위의 숲 분류기를 이용한 선종 예측 (Ship Type Prediction using Random Forest with Limited Ship Information)

  • 전호군;한재림
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.106-107
    • /
    • 2022
  • 주변선박에 대한 선종 식별은 선박의 향후 이동 경로와 조종 특성을 유추할 수 있으므로 항해사와 VTS 관제사에게 모두 중요한 정보이다. 그러나 AIS메시지 전송 중 통신 문제, 항해사의 AIS 이용 미숙지로 인해 선박의 선종 확인이 불가능한 경우가 빈번하다. 따라서 이 연구는 AIS데이터를 학습 및 테스트 데이터셋으로 분할, 무작위의 숲 분류기(Random Forest Classifier)에 AIS데이터의 선박 특성(feature)과 선종을 훈련 및 예측하는 방법을 제시한다. 연구를 위해 2018년 한해 울산 앞바다 AIS데이터를 이용하였다. 이 방법을 사용하면 다수의 항해사 또는 VTS 관제사가 토론을 통해 선종예측 경험을 공유하는 것과 같은 기능을 할 수 있다.

  • PDF

딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증 (Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM)

  • 차성재;강정석
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.1-32
    • /
    • 2018
  • 본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.

초분광 표적 탐지를 위한 L2,1-norm Regression 기반 밴드 선택 기법 (Band Selection Using L2,1-norm Regression for Hyperspectral Target Detection)

  • 김주창;양유경;김준형;김준모
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.455-467
    • /
    • 2017
  • 초분광 영상을 이용한 표적 탐지를 수행할 때에는 인접한 분광 밴드의 중복성의 문제 및 고차원 데이터로 인해 발생하는 방대한 계산량의 문제점을 해결하기 위한 특징 추출 과정이 필수적이다. 본 연구는 기계 학습 분야의 특징 선택 기법을 초분광 밴드 선택에 적용하기 위해 $L_{2,1}$-norm regression 모델을 이용한 새로운 밴드 선택 기법을 제안하였으며, 제안한 밴드 선택 기법의 성능 분석을 위해 표적이 존재하는 초분광영상을 직접 촬영하고 이를 바탕으로 표적 탐지를 수행한 결과를 분석하였다. 350 nm~2500 nm 파장 대역에서 밴드 수를 164개에서 약 30~40개로 감소시켰을 때 Adaptive Cosine Estimator(ACE) 탐지 성능이 유지되거나 향상되는 결과를 보였다. 실험 결과를 통해 제안한 밴드 선택 기법이 초분광 영상에서 탐지에 효율적인 밴드를 추출해 내며, 이를 통해 성능의 감소 없이 데이터의 차원 감소를 수행할 수 있어 향후 실시간 표적 탐지 시스템의 처리 속도 향상에 도움을 줄 수 있을 것으로 보인다.

사람 걸음 탐지 및 배경잡음 분류 처리를 위한 도플러 레이다용 딥뉴럴네트워크 (Human Walking Detection and Background Noise Classification by Deep Neural Networks for Doppler Radars)

  • 권지훈;하성재;곽노준
    • 한국전자파학회논문지
    • /
    • 제29권7호
    • /
    • pp.550-559
    • /
    • 2018
  • 본 논문은 딥뉴럴네트워크(deep neural network: DNN)를 이용해 사람 걸음 및 배경잡음원에 의해 발생한 마이크로 도플러 신호를 탐지 및 분류 처리하는 연구를 제안한다. 기존 분류처리 연구는 경험 및 통계적인 방법을 통해 분류기 성능에 직접적으로 영향을 미치는 의미있는 특징을 추출하기 위한 복잡한 과정을 포함한다. 그러나 딥뉴럴네트워크는 다수의 레이어 층을 단계적으로 통과하는 과정을 통해 점진적으로 특징을 재구성 및 생성하므로, 별도의 특징 추출과정을 생략할 수 있으며, 자연스럽게 네트워크상에서 특징을 생성할 수 있는 이점이 있다. 따라서 본 논문에서는 마이크로 도플러 신호 인식을 위한 딥뉴럴네트워크 효과성 입증을 위해, 이진분류기와 다층클래스 분류기를 다층퍼셉트론과 딥뉴럴네트워크를 통해 설계하고 비교분석한다. 실험 결과, 다층퍼셉트론은 이진분류기의 경우 테스트세트에 대한 분류 정확도가 90.3 %로 측정되었고, 다층클래스 분류기의 경우 테스트세트에 대한 분류정확도가 86.1 %로 측정되었다. 딥뉴럴네트워크는 이진분류기의 경우 테스트세트에 대한 분류 정확도가 97.3 %로 측정되었고, 다층클래스 분류기의 경우 테스트세트에 대한 분류정확도가 96.1 %로 측정되었다.