• 제목/요약/키워드: Machine-learning Feature

검색결과 732건 처리시간 0.026초

Mitigation of Phishing URL Attack in IoT using H-ANN with H-FFGWO Algorithm

  • Gopal S. B;Poongodi C
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권7호
    • /
    • pp.1916-1934
    • /
    • 2023
  • The phishing attack is a malicious emerging threat on the internet where the hackers try to access the user credentials such as login information or Internet banking details through pirated websites. Using that information, they get into the original website and try to modify or steal the information. The problem with traditional defense systems like firewalls is that they can only stop certain types of attacks because they rely on a fixed set of principles to do so. As a result, the model needs a client-side defense mechanism that can learn potential attack vectors to detect and prevent not only the known but also unknown types of assault. Feature selection plays a key role in machine learning by selecting only the required features by eliminating the irrelevant ones from the real-time dataset. The proposed model uses Hyperparameter Optimized Artificial Neural Networks (H-ANN) combined with a Hybrid Firefly and Grey Wolf Optimization algorithm (H-FFGWO) to detect and block phishing websites in Internet of Things(IoT) Applications. In this paper, the H-FFGWO is used for the feature selection from phishing datasets ISCX-URL, Open Phish, UCI machine-learning repository, Mendeley website dataset and Phish tank. The results showed that the proposed model had an accuracy of 98.07%, a recall of 98.04%, a precision of 98.43%, and an F1-Score of 98.24%.

Robust Facial Expression Recognition Based on Local Directional Pattern

  • Jabid, Taskeed;Kabir, Md. Hasanul;Chae, Oksam
    • ETRI Journal
    • /
    • 제32권5호
    • /
    • pp.784-794
    • /
    • 2010
  • Automatic facial expression recognition has many potential applications in different areas of human computer interaction. However, they are not yet fully realized due to the lack of an effective facial feature descriptor. In this paper, we present a new appearance-based feature descriptor, the local directional pattern (LDP), to represent facial geometry and analyze its performance in expression recognition. An LDP feature is obtained by computing the edge response values in 8 directions at each pixel and encoding them into an 8 bit binary number using the relative strength of these edge responses. The LDP descriptor, a distribution of LDP codes within an image or image patch, is used to describe each expression image. The effectiveness of dimensionality reduction techniques, such as principal component analysis and AdaBoost, is also analyzed in terms of computational cost saving and classification accuracy. Two well-known machine learning methods, template matching and support vector machine, are used for classification using the Cohn-Kanade and Japanese female facial expression databases. Better classification accuracy shows the superiority of LDP descriptor against other appearance-based feature descriptors.

Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population

  • Ryu, Seunghyong;Lee, Hyeongrae;Lee, Dong-Kyun;Park, Kyeongwoo
    • Psychiatry investigation
    • /
    • 제15권11호
    • /
    • pp.1030-1036
    • /
    • 2018
  • Objective In this study, we aimed to develop a model predicting individuals with suicide ideation within a general population using a machine learning algorithm. Methods Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 11,628 individuals via random down-sampling. This included 5,814 suicide ideators and the same number of non-suicide ideators. We randomly assigned the subjects to a training set (n=10,466) and a test set (n=1,162). In the training set, a random forest model was trained with 15 features selected with recursive feature elimination via 10-fold cross validation. Subsequently, the fitted model was used to predict suicide ideators in the test set and among the total of 35,116 subjects. All analyses were conducted in R. Results The prediction model achieved a good performance [area under receiver operating characteristic curve (AUC)=0.85] in the test set and predicted suicide ideators among the total samples with an accuracy of 0.821, sensitivity of 0.836, and specificity of 0.807. Conclusion This study shows the possibility that a machine learning approach can enable screening for suicide risk in the general population. Further work is warranted to increase the accuracy of prediction.

열화상 이미지와 환경변수를 이용한 콘크리트 균열 깊이 예측 머신 러닝 분석 (Comparison Analysis of Machine Learning for Concrete Crack Depths Prediction Using Thermal Image and Environmental Parameters)

  • 김지형;장아름;박민재;주영규
    • 한국공간구조학회논문집
    • /
    • 제21권2호
    • /
    • pp.99-110
    • /
    • 2021
  • This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.

Machine learning-based analysis and prediction model on the strengthening mechanism of biopolymer-based soil treatment

  • Haejin Lee;Jaemin Lee;Seunghwa Ryu;Ilhan Chang
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.381-390
    • /
    • 2024
  • The introduction of bio-based materials has been recommended in the geotechnical engineering field to reduce environmental pollutants such as heavy metals and greenhouse gases. However, bio-treated soil methods face limitations in field application due to short research periods and insufficient verification of engineering performance, especially when compared to conventional materials like cement. Therefore, this study aimed to develop a machine learning model for predicting the unconfined compressive strength, a representative soil property, of biopolymer-based soil treatment (BPST). Four machine learning algorithms were compared to determine a suitable model, including linear regression (LR), support vector regression (SVR), random forest (RF), and neural network (NN). Except for LR, the SVR, RF, and NN algorithms exhibited high predictive performance with an R2 value of 0.98 or higher. The permutation feature importance technique was used to identify the main factors affecting the strength enhancement of BPST. The results indicated that the unconfined compressive strength of BPST is affected by mean particle size, followed by biopolymer content and water content. With a reliable prediction model, the proposed model can present guidelines prior to laboratory testing and field application, thereby saving a significant amount of time and money.

안드로이드 플랫폼에서 악성 행위 분석을 통한 특징 추출과 머신러닝 기반 악성 어플리케이션 분류 (Malware Application Classification based on Feature Extraction and Machine Learning for Malicious Behavior Analysis in Android Platform)

  • 김동욱;나경기;한명묵;김미주;고웅;박준형
    • 인터넷정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.27-35
    • /
    • 2018
  • 본 논문은 안드로이드 플랫폼에서 악성 어플리케이션을 탐지하기 위한 연구로, 안드로이드 악성 어플리케이션에 대한 위협과 행위 분석에 대한 연구를 바탕으로 머신러닝을 적용한 악성 어플리케이션 탐지를 수행하였다. 안드로이드의 행위 분석은 동적 분석도구를 통해 수행할 수 있으며, 이를 통해 어플리케이션에 대한 API Calls, Runtime Log, System Resource, Network 등의 정보를 추출할 수 있다. 이 연구에서는 행위 분석을 통한 특징 추출을 머신러닝에 적용하기 위해 특징에 대한 속성을 변환하고, 전체 특징에 대한 머신러닝 적용과 특징들의 연관분석을 통한 주성분분석으로 특징간의 상관분석으로 얻은 머신러닝 적용을 수행하였다, 이에 대한 결과로 악성 어플리케이션에 대한 머신러닝 분류 결과는 전체 특징을 사용한 분류 결과보다 주요 특징을 통한 정확도 결과가 약 1~4%정도 향상되었으며, SVM 분류기의 경우 10%이상의 좋은 결과를 얻을 수 있었다. 이 결과를 통해서 우리는 전체적인 특징을 이용하는 것보다, 주요 특징만을 통해 얻을 결과가 전체적인 분류 알고리즘에 더 좋은 결과를 얻을 수 있고, 데이터 세트에서 의미있는 특징을 선정하는 것이 중요하다고 파악하였다.

머신러닝 기반 CFS(Correlation-based Feature Selection)기법과 Random Forest모델을 활용한 BMI(Benthic Macroinvertebrate Index) 예측에 관한 연구 (A Study on the prediction of BMI(Benthic Macroinvertebrate Index) using Machine Learning Based CFS(Correlation-based Feature Selection) and Random Forest Model)

  • 고우석;윤춘경;이한필;황순진;이상우
    • 한국물환경학회지
    • /
    • 제35권5호
    • /
    • pp.425-431
    • /
    • 2019
  • Recently, people have been attracting attention to the good quality of water resources as well as water welfare. to improve the quality of life. This study is a papers on the prediction of benthic macroinvertebrate index (BMI), which is a aquatic ecological health, using the machine learning based CFS (Correlation-based Feature Selection) method and the random forest model to compare the measured and predicted values of the BMI. The data collected from the Han River's branch for 10 years are extracted and utilized in 1312 data. Through the utilized data, Pearson correlation analysis showed a lack of correlation between single factor and BMI. The CFS method for multiple regression analysis was introduced. This study calculated 10 factors(water temperature, DO, electrical conductivity, turbidity, BOD, $NH_3-N$, T-N, $PO_4-P$, T-P, Average flow rate) that are considered to be related to the BMI. The random forest model was used based on the ten factors. In order to prove the validity of the model, $R^2$, %Difference, NSE (Nash-Sutcliffe Efficiency) and RMSE (Root Mean Square Error) were used. Each factor was 0.9438, -0.997, and 0,992, and accuracy rate was 71.6% level. As a result, These results can suggest the future direction of water resource management and Pre-review function for water ecological prediction.

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

Plant Species Identification based on Plant Leaf Using Computer Vision and Machine Learning Techniques

  • Kaur, Surleen;Kaur, Prabhpreet
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.49-60
    • /
    • 2019
  • Plants are very crucial for life on Earth. There is a wide variety of plant species available, and the number is increasing every year. Species knowledge is a necessity of various groups of society like foresters, farmers, environmentalists, educators for different work areas. This makes species identification an interdisciplinary interest. This, however, requires expert knowledge and becomes a tedious and challenging task for the non-experts who have very little or no knowledge of the typical botanical terms. However, the advancements in the fields of machine learning and computer vision can help make this task comparatively easier. There is still not a system so developed that can identify all the plant species, but some efforts have been made. In this study, we also have made such an attempt. Plant identification usually involves four steps, i.e. image acquisition, pre-processing, feature extraction, and classification. In this study, images from Swedish leaf dataset have been used, which contains 1,125 images of 15 different species. This is followed by pre-processing using Gaussian filtering mechanism and then texture and color features have been extracted. Finally, classification has been done using Multiclass-support vector machine, which achieved accuracy of nearly 93.26%, which we aim to enhance further.

Three-dimensional human activity recognition by forming a movement polygon using posture skeletal data from depth sensor

  • Vishwakarma, Dinesh Kumar;Jain, Konark
    • ETRI Journal
    • /
    • 제44권2호
    • /
    • pp.286-299
    • /
    • 2022
  • Human activity recognition in real time is a challenging task. Recently, a plethora of studies has been proposed using deep learning architectures. The implementation of these architectures requires the high computing power of the machine and a massive database. However, handcrafted features-based machine learning models need less computing power and very accurate where features are effectively extracted. In this study, we propose a handcrafted model based on three-dimensional sequential skeleton data. The human body skeleton movement over a frame is computed through joint positions in a frame. The joints of these skeletal frames are projected into two-dimensional space, forming a "movement polygon." These polygons are further transformed into a one-dimensional space by computing amplitudes at different angles from the centroid of polygons. The feature vector is formed by the sampling of these amplitudes at different angles. The performance of the algorithm is evaluated using a support vector machine on four public datasets: MSR Action3D, Berkeley MHAD, TST Fall Detection, and NTU-RGB+D, and the highest accuracies achieved on these datasets are 94.13%, 93.34%, 95.7%, and 86.8%, respectively. These accuracies are compared with similar state-of-the-art and show superior performance.