• 제목/요약/키워드: Machine-learning (ML)

검색결과 302건 처리시간 0.022초

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.133-153
    • /
    • 2023
  • 본 논문에서 우리는 뇌 신호 측정 기술 중 하나인 뇌전도를 활용한 새로운 접근방식을 제안한다. 전통적으로 연구자들은 감정 상태의 분류성능을 향상시키기 위해 뇌전도 신호와 생체신호를 결합해왔다. 우리의 목표는 뇌전도와 결합된 생체신호의 상호작용 효과를 탐구하고, 뇌전도+생체신호의 조합이 뇌전도 단독사용 또는 임의로 생성된 의사 무작위 신호와 결합한 경우에 비해 감정 상태의 분류 정확도를 향상시킬 수 있는지를 확인한다. 네 가지 특징추출 방법을 사용하여 두 개의 공개 데이터셋에서 얻은 데이터 기반의 뇌전도, 뇌전도+생체신호, 뇌전도+생체신호+무작위신호, 및 뇌전도+무작위신호의 네 가지 조합을 조사했다. 감정 상태 (작업 대 휴식 상태)는 서포트 벡터 머신과 장단기 기억망 분류기를 사용하여 분류했다. 우리의 결과는 가장 높은 정확도를 가진 서포트 벡터 머신과 고속 퓨리에 변환을 사용할 때 뇌전도+생체신호의 평균 오류율이 뇌전도+무작위신호와 뇌전도 단독 신호만을 사용한 경우에 비해 각각 4.7% 및 6.5% 높았음을 보여주었다. 우리는 또한 다양한 무작위 신호를 결합하여 뇌전도+생체신호의 오류율을 철저하게 분석했다. 뇌전도+생체신호+무작위신호의 오류율 패턴은 초기에는 깊은 이중 감소 현상으로 인해 감소하다가 차원의 저주로 인해 증가하는 V자 모양을 나타냈다. 결과적으로, 우리의 연구 결과는 뇌파와 생체신호의 결합이 항상 유망한 분류성능을 보장할 수 없음을 시사한다.

3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발 (Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals)

  • 정찬혁;김상윤;허성구;;신민혁;유창규
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.523-541
    • /
    • 2023
  • 3D 프린터의 활용이 높아짐에 따라 발생하는 화학물질에 대한 노출 빈도가 증가하고 있다. 그러나 3D 프린팅 발생 화학물질의 독성 및 유해성에 대한 연구는 미비하며, 분자 구조 데이터의 결측치로 인해 in silico 기법을 사용한 독성예측 연구는 저조한 실정이다. 본 연구에서는 화학물질의 분자구조 정보를 나타내는 주요 분자표현자의 결측치를 보간하여 3D 프린팅의 독성 및 유해성을 예측한 Data-centric QSAR 모델을 개발하였다. 먼저 MissForest 알고리즘을 사용해 3D 프린팅으로 발생되는 유해물질의 분자표현자 결측치를 보완하였으며, 서로 다른 4가지 기계학습 모델(결정트리, 랜덤포레스트, XGBoost, SVM)을 기반으로 Data-centric QSAR 모델을 개발하여 생물 농축 계수(Log BCF)와 옥탄올-공기분배계수(Log Koa), 분배계수(Log P)를 예측하였다. 또한, 설명 가능한 인공지능(XAI) 방법론 중 TreeSHAP (SHapley Additive exPlanations) 기법을 활용하여 Data-centric QSAR 모델의 신뢰성을 입증하였다. MissForest 알고리즘 기반 결측지 보간 기법은, 기존 분자구조 데이터에 비하여 약 2.5배 많은 분자구조 데이터를 확보할 수 있었다. 이를 바탕으로 개발된 Data-centric QSAR 모델의 성능은 Log BCF, Log Koa와 Log P를 각각 73%, 76%, 92% 의 예측 성능으로 예측할 수 있었다. 마지막으로 Tree-SHAP 분석결과 개발된 Data-centric QSAR 모델은 각 독성치와 물리적으로 상관성이 높은 분자표현자를 통하여 선택함을 설명할 수 있었고 독성 정보에 대한 높은 예측 성능을 확보할 수 있었다. 본 연구에서 개발한 방법론은 다른 프린팅 소재나 화학공정, 그리고 반도체/디스플레이 공정에서 발생 가능한 오염물질의 독성 및 인체 위해성 평가에 활용될 수 있을 것으로 사료된다.