• Title/Summary/Keyword: Machine-learning

Search Result 5,627, Processing Time 0.041 seconds

Scoring systems for the management of oncological hepato-pancreato-biliary patients

  • Alexander W. Coombs;Chloe Jordan;Sabba A. Hussain;Omar Ghandour
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.26 no.1
    • /
    • pp.17-30
    • /
    • 2022
  • Oncological scoring systems in surgery are used as evidence-based decision aids to best support management through assessing prognosis, effectiveness and recurrence. Currently, the use of scoring systems in the hepato-pancreato-biliary (HPB) field is limited as concerns over precision and applicability prevent their widespread clinical implementation. The aim of this review was to discuss clinically useful oncological scoring systems for surgical management of HPB patients. A narrative review was conducted to appraise oncological HPB scoring systems. Original research articles of established and novel scoring systems were searched using Google Scholar, PubMed, Cochrane, and Ovid Medline. Selected models were determined by authors. This review discusses nine scoring systems in cancers of the liver (CLIP, BCLC, ALBI Grade, RETREAT, Fong's score), pancreas (Genç's score, mGPS), and biliary tract (TMHSS, MEGNA). Eight models used exclusively objective measurements to compute their scores while one used a mixture of both subjective and objective inputs. Seven models evaluated their scoring performance in external populations, with reported discriminatory c-statistic ranging from 0.58 to 0.82. Selection of model variables was most frequently determined using a combination of univariate and multivariate analysis. Calibration, another determinant of model accuracy, was poorly reported amongst nine scoring systems. A diverse range of HPB surgical scoring systems may facilitate evidence-based decisions on patient management and treatment. Future scoring systems need to be developed using heterogenous patient cohorts with improved stratification, with future trends integrating machine learning and genetics to improve outcome prediction.

Study on Failure Classification of Missile Seekers Using Inspection Data from Production and Manufacturing Phases (생산 및 제조 단계의 검사 데이터를 이용한 유도탄 탐색기의 고장 분류 연구)

  • Ye-Eun Jeong;Kihyun Kim;Seong-Mok Kim;Youn-Ho Lee;Ji-Won Kim;Hwa-Young Yong;Jae-Woo Jung;Jung-Won Park;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.30-39
    • /
    • 2024
  • This study introduces a novel approach for identifying potential failure risks in missile manufacturing by leveraging Quality Inspection Management (QIM) data to address the challenges presented by a dataset comprising 666 variables and data imbalances. The utilization of the SMOTE for data augmentation and Lasso Regression for dimensionality reduction, followed by the application of a Random Forest model, results in a 99.40% accuracy rate in classifying missiles with a high likelihood of failure. Such measures enable the preemptive identification of missiles at a heightened risk of failure, thereby mitigating the risk of field failures and enhancing missile life. The integration of Lasso Regression and Random Forest is employed to pinpoint critical variables and test items that significantly impact failure, with a particular emphasis on variables related to performance and connection resistance. Moreover, the research highlights the potential for broadening the scope of data-driven decision-making within quality control systems, including the refinement of maintenance strategies and the adjustment of control limits for essential test items.

Predicting Traffic Accident Risk based on Driver Abnormal Behavior and Gaze

  • Ji-Woong Yang;Hyeon-Jin Jung;Han-Jin Lee;Tae-Wook Kim;Ellen J. Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose a new approach by analyzing driver behavior and gaze changes within the vehicle in real-time to assess and predict the risk of traffic accidents. Utilizing data analysis and machine learning algorithms, this research precisely measures drivers' abnormal behaviors and gaze movement patterns in real-time, and aggregates these into an overall Risk Score to evaluate the potential for traffic accidents. This research underscores the significance of internal factors, previously unexplored, providing a novel perspective in the field of traffic safety research. Such an innovative approach suggests the feasibility of developing real-time predictive models for traffic accident prevention and safety enhancement, expected to offer critical foundational data for future traffic accident prevention strategies and policy formulation.

Verification of the Suitability of Fine Dust and Air Quality Management Systems Based on Artificial Intelligence Evaluation Models

  • Heungsup Sim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.165-170
    • /
    • 2024
  • This study aims to verify the accuracy of the air quality management system in Yangju City using an artificial intelligence (AI) evaluation model. The consistency and reliability of fine dust data were assessed by comparing public data from the Ministry of Environment with data from Yangju City's air quality management system. To this end, we analyzed the completeness, uniqueness, validity, consistency, accuracy, and integrity of the data. Exploratory statistical analysis was employed to compare data consistency. The results of the AI-based data quality index evaluation revealed no statistically significant differences between the two datasets. Among AI-based algorithms, the random forest model demonstrated the highest predictive accuracy, with its performance evaluated through ROC curves and AUC. Notably, the random forest model was identified as a valuable tool for optimizing the air quality management system. This study confirms that the reliability and suitability of fine dust data can be effectively assessed using AI-based model performance evaluation, contributing to the advancement of air quality management strategies.

Seismic Data Processing Using BERT-Based Pretraining: Comparison of Shotgather Arrays (BERT 기반 사전학습을 이용한 탄성파 자료처리: 송신원 모음 배열 비교)

  • Youngjae Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.171-180
    • /
    • 2024
  • The processing of seismic data involves analyzing earthquake wave data to understand the internal structure and characteristics of the Earth, which requires high computational power. Recently, machine learning (ML) techniques have been introduced to address these challenges and have been utilized in various tasks such as noise reduction and velocity model construction. However, most studies have focused on specific seismic data processing tasks, limiting the full utilization of similar features and structures inherent in the datasets. In this study, we compared the efficacy of using receiver-wise time-series data ("receiver array") and synchronized receiver signals ("time array") from shotgathers for pretraining a Bidirectional Encoder Representations from Transformers (BERT) model. To this end, shotgather data generated from a synthetic model containing faults was used to perform noise reduction, velocity prediction, and fault detection tasks. In the task of random noise reduction, both the receiver and time arrays showed good performance. However, for tasks requiring the identification of spatial distributions, such as velocity estimation and fault detection, the results from the time array were superior.

Study on the Performance Evaluation of Encoding and Decoding Schemes in Vector Symbolic Architectures (벡터 심볼릭 구조의 부호화 및 복호화 성능 평가에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.229-235
    • /
    • 2024
  • Recent years have seen active research on methods for efficiently processing and interpreting large volumes of data in the fields of artificial intelligence and machine learning. One of these data processing technologies, Vector Symbolic Architecture (VSA), offers an innovative approach to representing complex symbols and data using high-dimensional vectors. VSA has garnered particular attention in various applications such as natural language processing, image recognition, and robotics. This study quantitatively evaluates the characteristics and performance of VSA methodologies by applying five VSA methodologies to the MNIST dataset and measuring key performance indicators such as encoding speed, decoding speed, memory usage, and recovery accuracy across different vector lengths. BSC and VT demonstrated relatively fast performance in encoding and decoding speeds, while MAP and HRR were relatively slow. In terms of memory usage, BSC was the most efficient, whereas MAP used the most memory. The recovery accuracy was highest for MAP and lowest for BSC. The results of this study provide a basis for selecting appropriate VSA methodologies depending on the application area.

A counting-time optimization method for artificial neural network (ANN) based gamma-ray spectroscopy

  • Moonhyung Cho;Jisung Hwang;Sangho Lee;Kilyoung Ko;Wonku Kim;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2690-2697
    • /
    • 2024
  • With advancements in machine learning technologies, artificial neural networks (ANNs) are being widely used to improve the performance of gamma-ray spectroscopy based on NaI(Tl) scintillation detectors. Typically, the performance of ANNs is evaluated using test datasets composed of actual spectra. However, the generation of such test datasets encompassing a wide range of actual spectra representing various scenarios often proves inefficient and time-consuming. Thus, instead of measuring actual spectra, we generated virtual spectra with diverse spectral features by sampling from categorical distribution functions derived from the base spectra of six radioactive isotopes: 54Mn, 57Co, 60Co, 134Cs, 137Cs, and 241Am. For practical applications, we determined the optimum counting time (OCT) as the point at which the change in the Kullback-Leibler divergence (ΔKLDV) values between the synthetic spectra used for training the ANN and the virtual spectra approaches zero. The accuracies of the actual spectra were significantly improved when measured up to their respective OCTs. The outcomes demonstrated that the proposed method can effectively determine the OCTs for gamma-ray spectroscopy based on ANNs without the need to measure actual spectra.

Business Intelligence Design for Strategic Decision Making for Small and Midium-size E-Commerce Sellers: Focusing on Promotion Strategy (중소 전자상거래 판매상의 전략적 의사결정을 위한 비즈니스 인텔리전스 설계: 프로모션 전략을 중심으로)

  • Seung-Joo Lee;Young-Hyun Lee;Jin-Hyun Lee;Kang-Hyun Lee;Kwang-Sup Shin
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.201-222
    • /
    • 2023
  • As the e-Commerce gets increased based on the platform, a lot of small and medium sized sellers have tried to develop the more effective strategies to maximize the profit. In order to increase the profitability, it is quite important to make the strategic decisions based on the range of promotion, discount rate and categories of products. This research aims to develop the business intelligence application which can help sellers of e-Commerce platform make better decisions. To decide whether or not to promote, it is needed to predict the level of increase in sales after promotion. I n this research, we have applied the various machine learning algorithm such as MLP(Multi Layer Perceptron), Gradient Boosting Regression, Random Forest, and Linear Regression. Because of the complexity of data structure and distinctive characteristics of product categories, Random Forest and MLP showed the best performance. It seems possible to apply the proposed approach in this research in support the small and medium sized sellers to react on the market changes and to make the reasonable decisions based on the data, not their own experience.

Comparison of the Association Between Presenteeism and Absenteeism among Replacement Workers and Paid Workers: Cross-sectional Studies and Machine Learning Techniques

  • Heejoo Park;Juho Sim;Juyeon Oh;Jongmin Lee;Chorom Lee;Yangwook Kim;Byungyoon Yun;Jin-ha Yoon
    • Safety and Health at Work
    • /
    • v.15 no.2
    • /
    • pp.151-157
    • /
    • 2024
  • Background: Replacement drivers represent a significant portion of platform labor in the Republic of Korea, often facing night shifts and the demands of emotional labor. Research on replacement drivers is limited due to their widespread nature. This study examined the levels of presenteeism and absenteeism among replacement drivers in comparison to those of paid male workers in the Republic of Korea. Methods: This study collected data for replacement drivers and used data from the 6th Korean Working Conditions Survey for paid male workers over the age of 20 years. Propensity score matching was performed to balance the differences between paid workers and replacement drivers. Multivariable logistic regression was used to estimate the adjusted odds ratio (OR) and 95% confidence intervals for presenteeism and absenteeism by replacement drivers. Stratified analysis was conducted for age groups, educational levels, income levels, and working hours. The analysis was adjusted for variables including age, education, income, working hours, working days per week, and working duration. Results: Among the 1,417 participants, the prevalence of presenteeism and absenteeism among replacement drivers was 53.6% (n = 210) and 51.3% (n = 201), respectively. The association of presenteeism and absenteeism (adjusted OR [95% CI] = 8.42 [6.36-11.16] and 20.80 [95% CI = 14.60-29.62], respectively) with replacement drivers being significant, with a prominent association among the young age group, high educational, and medium income levels. Conclusion: The results demonstrated that replacement drivers were more significantly associated with presenteeism and absenteeism than paid workers. Further studies are necessary to establish a strategy to decrease the risk factors among replacement drivers.

Enhancing prediction of the moment-rotation behavior in flush end plate connections using Multi-Gene Genetic Programming (MGGP)

  • Amirmohammad Rabbani;Amir Reza Ghiami Azad;Hossein Rahami
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.643-656
    • /
    • 2024
  • The prediction of the moment rotation behavior of semi-rigid connections has been the subject of extensive research. However, to improve the accuracy of these predictions, there is a growing interest in employing machine learning algorithms. This paper investigates the effectiveness of using Multi-gene genetic programming (MGGP) to predict the moment-rotation behavior of flush-end plate connections compared to that of artificial neural networks (ANN) and previous studies. It aims to automate the process of determining the most suitable equations to accurately describe the behavior of these types of connections. Experimental data was used to train ANN and MGGP. The performance of the models was assessed by comparing the values of coefficient of determination (R2), maximum absolute error (MAE), and root-mean-square error (RMSE). The results showed that MGGP produced more accurate, reliable, and general predictions compared to ANN and previous studies with an R2 exceeding 0.99, an RMSE of 6.97, and an MAE of 38.68, highlighting its advantages over other models. The use of MGGP can lead to better modeling and more precise predictions in structural design. Additionally, an experimentally-based regression analysis was conducted to obtain the rotational capacity of FECs. A new equation was proposed and compared to previous ones, showing significant improvement in accuracy with an R2 score of 0.738, an RMSE of 0.014, and an MAE of 0.024.