• Title/Summary/Keyword: Machine-Tools

Search Result 1,307, Processing Time 0.03 seconds

Cloud Attack Detection with Intelligent Rules

  • Pradeepthi, K.V;Kannan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4204-4222
    • /
    • 2015
  • Cloud is the latest buzz word in the internet community among developers, consumers and security researchers. There have been many attacks on the cloud in the recent past where the services got interrupted and consumer privacy has been compromised. Denial of Service (DoS) attacks effect the service availability to the genuine user. Customers are paying to use the cloud, so enhancing the availability of services is a paramount task for the service provider. In the presence of DoS attacks, the availability is reduced drastically. Such attacks must be detected and prevented as early as possible and the power of computational approaches can be used to do so. In the literature, machine learning techniques have been used to detect the presence of attacks. In this paper, a novel approach is proposed, where intelligent rule based feature selection and classification are performed for DoS attack detection in the cloud. The performance of the proposed system has been evaluated on an experimental cloud set up with real time DoS tools. It was observed that the proposed system achieved an accuracy of 98.46% on the experimental data for 10,000 instances with 10 fold cross-validation. By using this methodology, the service providers will be able to provide a more secure cloud environment to the customers.

DLDW: Deep Learning and Dynamic Weighing-based Method for Predicting COVID-19 Cases in Saudi Arabia

  • Albeshri, Aiiad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.212-222
    • /
    • 2021
  • Multiple waves of COVID-19 highlighted one crucial aspect of this pandemic worldwide that factors affecting the spread of COVID-19 infection are evolving based on various regional and local practices and events. The introduction of vaccines since early 2021 is expected to significantly control and reduce the cases. However, virus mutations and its new variant has challenged these expectations. Several countries, which contained the COVID-19 pandemic successfully in the first wave, failed to repeat the same in the second and third waves. This work focuses on COVID-19 pandemic control and management in Saudi Arabia. This work aims to predict new cases using deep learning using various important factors. The proposed method is called Deep Learning and Dynamic Weighing-based (DLDW) COVID-19 cases prediction method. Special consideration has been given to the evolving factors that are responsible for recent surges in the pandemic. For this purpose, two weights are assigned to data instance which are based on feature importance and dynamic weight-based time. Older data is given fewer weights and vice-versa. Feature selection identifies the factors affecting the rate of new cases evolved over the period. The DLDW method produced 80.39% prediction accuracy, 6.54%, 9.15%, and 7.19% higher than the three other classifiers, Deep learning (DL), Random Forest (RF), and Gradient Boosting Machine (GBM). Further in Saudi Arabia, our study implicitly concluded that lockdowns, vaccination, and self-aware restricted mobility of residents are effective tools in controlling and managing the COVID-19 pandemic.

PharmacoNER Tagger: a deep learning-based tool for automatically finding chemicals and drugs in Spanish medical texts

  • Armengol-Estape, Jordi;Soares, Felipe;Marimon, Montserrat;Krallinger, Martin
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.15.1-15.7
    • /
    • 2019
  • Automatically detecting mentions of pharmaceutical drugs and chemical substances is key for the subsequent extraction of relations of chemicals with other biomedical entities such as genes, proteins, diseases, adverse reactions or symptoms. The identification of drug mentions is also a prior step for complex event types such as drug dosage recognition, duration of medical treatments or drug repurposing. Formally, this task is known as named entity recognition (NER), meaning automatically identifying mentions of predefined entities of interest in running text. In the domain of medical texts, for chemical entity recognition (CER), techniques based on hand-crafted rules and graph-based models can provide adequate performance. In the recent years, the field of natural language processing has mainly pivoted to deep learning and state-of-the-art results for most tasks involving natural language are usually obtained with artificial neural networks. Competitive resources for drug name recognition in English medical texts are already available and heavily used, while for other languages such as Spanish these tools, although clearly needed were missing. In this work, we adapt an existing neural NER system, NeuroNER, to the particular domain of Spanish clinical case texts, and extend the neural network to be able to take into account additional features apart from the plain text. NeuroNER can be considered a competitive baseline system for Spanish drug and CER promoted by the Spanish national plan for the advancement of language technologies (Plan TL).

Quality Check Monitoring System for Advancing the Yield Rate based on Sensor (베어링 생산수율 향상을 위한 센서기반 품질 체크 모니터링 장치)

  • Xiang, Zhao;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper presents the monitoring method of machining error and quality check to improve the productivity of boring manufacturing process. Machining error usually appears as the offset of spatial location of actual cutting path compared to ideal cutting path. In order to monitor an error of workpiece, multiple factors affecting quality of boring, such as distortion of workpiece, clamping error, radial rotation error of the spindle and motion error of machine tools, were took into account. To verify the productive quality, we propose the quality check system. The system based on IT convergence analyzes the process error rate and saves the analyzed data in memory. Also, these play important roles in detecting an inferior production goods and can decrease the production cost and loss of bearing.

History of Radiation Therapy Technology

  • Huh, Hyun Do;Kim, Seonghoon
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.124-134
    • /
    • 2020
  • Here we review the evolutionary history of radiation therapy technology through the festschrift of articles in celebration of the 30th anniversary of Korean Society of Medical Physics (KSMP). Radiation therapy technology used in clinical practice has evolved over a long period of time. Various areas of science, such as medical physics, mechanical engineering, and computer engineering, have contributed to the continual development of new devices and techniques. The scope of this review was restricted to two areas; i.e., output energy production and functional development, because it is not possible to include all development processes of this technology due to space limitations. The former includes the technological transition process from the initial technique applied to the first model to the latest technique currently used in a variety of machines. The latter has had a direct effect on treatment outcomes and safety, which changed the paradigm of radiation therapy, leading to new guidelines on dose prescriptions, innovation of dose verification tools, new measurement methods and calculation systems for radiation doses, changes in the criteria for errors, and medical law changes in all countries. Various complex developments are covered in this review. To the best of our knowledge, there have been few reviews on this topic and we consider it very meaningful to provide a review in the festschrift in celebration of the 30th anniversary of the KSMP.

Intelligent Android Malware Detection Using Radial Basis Function Networks and Permission Features

  • Abdulrahman, Ammar;Hashem, Khalid;Adnan, Gaze;Ali, Waleed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.286-293
    • /
    • 2021
  • Recently, the quick development rate of apps in the Android platform has led to an accelerated increment in creating malware applications by cyber attackers. Numerous Android malware detection tools have utilized conventional signature-based approaches to detect malware apps. However, these conventional strategies can't identify the latest apps on whether applications are malware or not. Many new malware apps are periodically discovered but not all malware Apps can be accurately detected. Hence, there is a need to propose intelligent approaches that are able to detect the newly developed Android malware applications. In this study, Radial Basis Function (RBF) networks are trained using known Android applications and then used to detect the latest and new Android malware applications. Initially, the optimal permission features of Android apps are selected using Information Gain Ratio (IGR). Appropriately, the features selected by IGR are utilized to train the RBF networks in order to detect effectively the new Android malware apps. The empirical results showed that RBF achieved the best detection accuracy (97.20%) among other common machine learning techniques. Furthermore, RBF accomplished the best detection results in most of the other measures.

Reproduction strategy of radiation data with compensation of data loss using a deep learning technique

  • Cho, Woosung;Kim, Hyeonmin;Kim, Duckhyun;Kim, SongHyun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2229-2236
    • /
    • 2021
  • In nuclear-related facilities, such as nuclear power plants, research reactors, accelerators, and nuclear waste storage sites, radiation detection, and mapping are required to prevent radiation overexposure. Sensor network systems consisting of radiation sensor interfaces and wxireless communication units have become promising tools that can be used for data collection of radiation detection that can in turn be used to draw a radiation map. During data collection, malfunctions in some of the sensors can occasionally occur due to radiation effects, physical damage, network defects, sensor loss, or other reasons. This paper proposes a reproduction strategy for radiation maps using a U-net model to compensate for the loss of radiation detection data. To perform machine learning and verification, 1,561 simulations and 417 measured data of a sensor network were performed. The reproduction results show an accuracy of over 90%. The proposed strategy can offer an effective method that can be used to resolve the data loss problem for conventional sensor network systems and will specifically contribute to making initial responses with preserved data and without the high cost of radiation leak accidents at nuclear facilities.

Design and Implementation of an Absolute Position Sensor Based on Laser Speckle with Reduced Database

  • Tak, Yoon-Oh;Bandoy, Joseph Vermont B.;Eom, Joo Beom;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.362-369
    • /
    • 2021
  • Absolute position sensors are widely used in machine tools and precision measuring instruments because measurement errors are not accumulated, and position measurements can be performed without initialization. The laser speckle-based absolute position sensor, in particular, has advantages in terms of simple system configuration and high measurement accuracy. Unlike traditional absolute position sensors, it does not require an expensive physical length scale; instead, it uses a laser speckle image database to measure a moving surface position. However, there is a problem that a huge database is required to store information in all positions on the surface. Conversely, reducing the size of the database also decreases the accuracy of position measurements. Therefore, in this paper, we propose a new method to measure the surface position with high precision while reducing the size of the database. We use image stitching and approximation methods to reduce database size and speed up measurements. The absolute position error of the proposed method was about 0.27 ± 0.18 ㎛, and the average measurement time was 25 ms.

Module-type Triboelectric Nanogenerator for Collecting Various Kinetic Energies

  • Sungho, Ji;Youngchul, Chang;Jinhyoung, Park
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.376-382
    • /
    • 2022
  • A triboelectric nanogenerator (TENG) can obtain electrical output due to the reciprocal motion between two objects (i.e., rubbing), in which repetitive contact is made. High reliability, stable output, and high reproducibility are important aspects of the electrical output obtained through a TENG as a sensor or generator, thus enabling its meaningful use. Therefore, many researchers fabricated TENGs into individual parts in the form of one module type to obtain high reproducibility and reliability. Since a TENG manufactured as a module type operates as a single device, it is possible to collect kinetic energy and convert it into electrical energy through the interaction between internally configured elements without the need for a separate structure. In addition, it is relatively easy to apply the size to the body, machine tools, and natural environment by simply adjusting the size suitable for use and surrounding environmental conditions. In this paper, the application cases of module-type TENGs are divided into four areas, and the research progress of module-type TENGs in each area is extensively reviewed.

Extraction Scheme of Function Information in Stripped Binaries using LSTM (스트립된 바이너리에서 LSTM을 이용한 함수정보 추출 기법)

  • Chang, Duhyeuk;Kim, Seon-Min;Heo, Junyoung
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.39-46
    • /
    • 2021
  • To analyze and defend malware codes, reverse engineering is used as identify function location information. However, the stripped binary is not easy to find information such as function location because function symbol information is removed. To solve this problem, there are various binary analysis tools such as BAP and BitBlaze IDA Pro, but they are based on heuristics method, so they do not perform well in general. In this paper, we propose a technique to extract function information using LSTM-based models by applying algorithms of N-byte method that is extracted binaries corresponding to reverse assembling instruments in a recursive descent method. Through experiments, the proposed techniques were superior to the existing techniques in terms of time and accuracy.