이 연구는 도로 비탈면에서 발생하는 산사태의 확률론적 예측에 기반된 산사태 발생에 영향을 미치는 인자의 중요도 산정 및 예측 모델을 개발하는 것이다. 산사태 예측 모델을 개발하기 위해 한반도 전 지역을 대상으로 2007년부터 2020년까지 조사된 30,615사면의 현장조사 자료를 활용하였다. 전체 131개의 변수 인자 중 지형인자 17개, 지질인자 114개(기반암 89개를 포함), 도로와의 이격거리를 사용하였다. 산사태 발생에 영향을 미치는 인자를 자동화된 머신러닝인 AutoML을 실시하여 예측 성능이 뛰어난 XRT(extremely randomized trees)를 선정하였다. 변수 중요도 분석결과 지형적 요인 10개, 지질인자 9개, 사회적 영향성인 도로와의 이격 거리와 관련된 항목순으로 급경사지 불안정에 가장 많은 영향을 주는 것으로 분석되었다. 개발된 모델의 신뢰성 검증을 수행한 결과 AUC 83.977%의 예측율을 확보한 것으로 나타났다. 이 모델은 산사태 이력을 기반으로 한 현장조사 자료만을 이용하여 변수 중요도의 순위를 도출함으로써 그에 따른 산사태 발생 가능성을 확률적 및 정량적으로 평가하였다. 향후 의사 결정자들에게 현장조사를 통한 사면진단 안전평가 시 신뢰성 있는 근거를 제공하리라 판단된다.
한국어에서 절들의 의존관계를 밝히는 작업은 구문 분석 작업에서 가장 어려운 작업들 중에 하나로 인식되고 있다. 절의 의존관계를 파악하는 일은 표면적으로 나타나는 정보만을 가지고 처리할 수 없고, 의미정보와 같은 추가적인 정보가 필요할 것으로 판단하고 처리해 왔다. 본 논문에서는 추가적인 정보를 사용하지 알고, 문장에서 얻을 수 있는 표면적인 정보만을 사용하여 절들 간의 의존관계를 파악하는 방법을 제안한다. 문장에서 얻을 수 있는 표면적인 정보는 문장의 구문 정보(tree structure information)와 어휘 및 거리 정보를 가지고 있는 정적인 정보(static information)로 나누어 볼 수 있다. 본 논문에서는 절들 간의 의존 관계 파악을 위하여 구문 정보와 정적 정보를 다루는 하나 이상의 커널의 결합해서 사용하는 복합 커널(composite kernel)을 제안하고, 이 커널에 맞는 다양한 인스턴스 공간의 설정을 제안한다. 실험은 최적화된 인스턴스 공간을 절들 간의 의존관계 파악 및 문장 수준에서 성능을 검정하였다. 관계 인스턴스 공간은 절들 간의 연결 및 하부절의 표현 유무로 나누었고, 결정된 인스턴스 공간에서 복합커널을 사용한 방법이 좋은 성능을 발휘함을 보였다.
자동으로 해킹을 수행하는 도구 및 기법의 발전으로 인해 최근 신규 보안 취약점들이 증가하고 있다. 대표적인 취약점 DB인 CVE를 기준으로 2010년부터 2015년까지 신규 취약점이 약 8만건이 등록되었고, 최근에도 점차 증가하는 추세이다. 그러나 이에 대응하는 방법은 많은 시간이 소요되는 전문가의 수동 분석에 의존하고 있다. 수동 분석의 경우 취약점을 발견하고, 패치를 생성하기까지 약 9개월의 시간이 소요된다. 제로데이와 같은 빠른 대응이 필요한 취약점에 대한 위험성이 더 부각되는 이유이다. 이와 같은 문제로 인해 최근 자동화된 SW보안 취약점 탐색 및 대응 기술에 대한 관심이 증가하고 있다. 2016년에는 바이너리를 대상으로 사람의 개입을 최소화하여 자동화된 취약점 분석 및 패치를 수행하는 최초의 대회인 CGC가 개최 되었다. 이 외에도 세계적으로 Darktrace, Cylance 등의 프로젝트를 통해 인공지능과 머신러닝을 활용하여 자동화된 대응 기술들을 발표하고 있다. 그러나 이러한 흐름과는 달리 국내에서는 자동화에 대한 기술 연구가 미비한 상황이다. 이에 본 논문에서는 자동화된 SW 보안 취약점 탐색 및 대응 기술을 개발하기 위한 선행 연구로서 취약점 탐색과 대응 기술에 대한 선행 연구 및 관련 도구들을 분석하고, 각 기술들을 비교하여 자동화에 용이한 기술 선정과 자동화를 위해 보완해야 할 요소를 제안한다.
본 논문에서는 사지가 마비되어 신체를 움직이지 못하지만 뇌의 기능은 살아있는 장애인들을 위하여, 생각만으로 외부의 장치를 제어할 수 있도록 하는 뇌-컴퓨터 인터페이스(BCI: Brain-Computer Interface) 기술을 연구하였다. 신경생리학 분야에서의 연구 결과에 의하면, 신체를 움직이는 상상을 할 경우, 뇌의 운동/감각 피질 영역에서는 $\beta$파(14-26 Hz)와 $\mu$파(8-12 Hz)가 억제/증가되는 ERD/ERS(Event-Related Desynchronization / Synchronization) 현상이 발생한다고 알려져 있다. 본 연구에서는 이를 기반으로 혀, 발, 왼손, 오른손의 동작 상상을 자극으로 이용하여 변화하는 뇌 신호 패턴을 실시간으로 분석하여 피험자의 생각을 읽을 수 있도록 하였으며, 상 하 좌 우의 네 방향으로 이동할 수 있도록 하는 마우스 제어 인터페이스를 구현하였다. 동작 상상 시 발생하는 뇌 신경 활동의 변화를 관측하기 위해서 뇌에 손상을 주지 않으면서도 높은 시간 해상도로 측정이 가능한 비침습적 뇌전도(EEG: ElectroEncephaloGraphy)를 이용하였다. 그러나 뇌전도 신호는 특성상 신호의 크기가 미약하고, 잡음의 영향을 많아 분석이 어렵다. 따라서 이를 극복하기 위해 통계적 방법을 기반으로 한 기계학습 기법인 CSP(Common Spatial Pattern)와 선형판별 분석(Linear Discriminant Analysis)을 이용하여 서로 다른 동작 상상에 의해 발생하는 뇌 신호들 간의 분산이 최대가 되도록 신호를 변환하여 인식 성능을 높일 수 있었다. 또한 분석된 뇌 신호의 시각화를 통해, 기존에 알려진 뇌의 해부학적, 신경생리학적 지식과 일치하는 ERD/ERS 현상이 발생하는 것을 확인할 수 있었다.
Due to the impressive flexural performance, enhanced compressive strength and more constrained crack propagation, Fibre-reinforced concrete (FRC) have been widely employed in the construction application. Majority of experimental studies have focused on the seismic behavior of FRC columns. Based on the valid experimental data obtained from the previous studies, the current study has evaluated the seismic response and compressive strength of FRC rectangular columns while following hybrid metaheuristic techniques. Due to the non-linearity of seismic data, Adaptive neuro-fuzzy inference system (ANFIS) has been incorporated with metaheuristic algorithms. 317 different datasets from FRC column tests has been applied as one database in order to determine the most influential factor on the ultimate strengths of FRC rectangular columns subjected to the simulated seismic loading. ANFIS has been used with the incorporation of Particle Swarm Optimization (PSO) and Genetic algorithm (GA). For the analysis of the attained results, Extreme learning machine (ELM) as an authentic prediction method has been concurrently used. The variable selection procedure is to choose the most dominant parameters affecting the ultimate strengths of FRC rectangular columns subjected to simulated seismic loading. Accordingly, the results have shown that ANFIS-PSO has successfully predicted the seismic lateral load with R2 = 0.857 and 0.902 for the test and train phase, respectively, nominated as the lateral load prediction estimator. On the other hand, in case of compressive strength prediction, ELM is to predict the compressive strength with R2 = 0.657 and 0.862 for test and train phase, respectively. The results have shown that the seismic lateral force trend is more predictable than the compressive strength of FRC rectangular columns, in which the best results belong to the lateral force prediction. Compressive strength prediction has illustrated a significant deviation above 40 Mpa which could be related to the considerable non-linearity and possible empirical shortcomings. Finally, employing ANFIS-GA and ANFIS-PSO techniques to evaluate the seismic response of FRC are a promising reliable approach to be replaced for high cost and time-consuming experimental tests.
뉴럴 디코딩은 뉴론이 발화한 스파이크 트레인으로부터 뉴론에 인가된 원 자극을 추정하는 작업을 말한다. 디코딩은 뉴론들끼리 어떻게 신호를 주고 받는 지를 이해함으로써 궁극적으로 뇌가 어떻게 정보처리를 하는 지 이해하는 기초적인 작업이다. 이 논문에서 우리는 3가지 뉴럴 디코딩 방법, 즉 빈도 디코딩, 시간 디코딩, 군집 디코딩 방법에 대해 설명하겠다. 빈도 디코딩은 자극에 대한 스파이크의 발화빈도 정보를 이용하여 자극을 복원하는 방법을 말한다. 역사적으로 가장 먼저 시도되었고 가장 간단한 디코딩 방법이다. 그러나 정수 개인 스파이크 개수로부터 빈도를 계산하는 과정에서 빈도자체가 불연속이고 양자화될 가능성이 높기 때문에 간단하고 정적인 자극이 아닌 경우 빈도 디코딩으로는 자극을 복원하기 어렵다는 한계를 가지고 있다. 시간 디코딩은 스파이크 발생 빈도가 아닌 개별 스파이크들의 발생시각을 이용한 디코딩 방법을 말하며 실제 빠르게 변화하는 자극의 경우 신경세포는 빈도 디코딩이 아니라 시간 디코딩을 통해 자극을 추정하는 것으로 이해되고 있다. 군집 디코딩은 단일 신경세포가 아닌 군집 신경세포로부터 자극을 복원하는 방법이다. 군집 디코딩은 단일 신경 세포 디코딩에 비해 신경 세포의 가변성에 따른 불확실성을 감소시킬 수 있고 서로 다른 자극의 특성을 동시에 표현할 수 있다는 장점을 갖는다. 이 논문에서는 먼저 세 가지 뉴럴디코딩 방법에 대해 소개하고 정보이론이 뉴럴디코딩에 어떻게 적용되는 지를 다룬 후 마지막으로 최근에 각광받고 있는 기계학습 방법에 의한 뉴럴 디코딩에 대해 다루도록 하겠다.
품질검사는 중간상품이나 최종상품을 품질관리 표준을 만족하는 양품과 불량품으로 분리하는 일을 수행한다. 대량생산체계에서 품질을 수작업으로 검사하는 것은 일관성과 효율성을 저하시키므로 대량으로 생산되는 상품의 품질을 검사하는 것은 다수의 공정에서 기계에 의한 자동 확인과 분류를 포함하게 된다. 생산공정에서 발생하는 데이터를 활용하여 공정을 개선하고 최적화하려는 선행 연구들이 많았음에도 불구하고, 실시간에 많은 데이터를 처리하는데 있어서의 기술적인 한계로 인해 실제 구현에서의 제약이 많이 있었다. 최근 빅데이터에 관한 연구에서는 데이터 처리기술을 개선하였고, 실시간에 데이터를 수집, 처리, 분석하는 과정을 가능하게 하게 하고 있다. 본 논문에서는 품질검사를 위한 빅데이터 적용의 단계와 세부사항을 제안하고, 유제품 산업에 적용 사례를 제시하려고 한다. 먼저 선행 연구들을 조사하고, 제조 부문에 적용할 수 있는 빅데이터 분석절차를 제안하며 제안된 방법의 실현가능성을 평가하기 위해서, 유제품 산업 분야의 품질검사과정 중 하나에 회선신경망(Convolutional Neural Network) 기술 및 랜덤포레스트(Random Forest) 기술을 적용하였다. 품질검사를 위해 제품의 뚜껑 및 빨대의 사진을 수집, 처리, 분석하여, 결함 여부를 판단하고, 과거 품질 검사결과와 비교하였다. 제안된 방법은 과거에 수행되었던 품질검사에 비해 분류 정확성 측면에서 의미 있는 개선을 확인할 수 있었다. 본 연구를 통해, 유제품 산업의 빅데이터 활용을 통한 품질검사 정확도 개선 가능성을 확인하였다.
추천시스템(recommender system)은 고객의 선호도를 예측하여 상품과 서비스를 제공하는 기법으로, 현재 다양한 온라인 서비스에 활용되고 있다. 이와 관련된 많은 선행 연구들은 협업필터링(collaborative filtering)에 기반한 추천시스템을 제안하였는데, 대부분의 경우 고객의 구매 내역 또는 평점 데이터만 사용하여 진행되었다. 오늘날 소비자들은 제품을 구매하는 과정에서 온라인 검색 행동을 하여 관심있는 제품을 찾는다. 그렇기 때문에 검색 키워드 데이터는 고객의 선호도를 파악하는데 매우 유용한 정보일 수 있다. 그러나 지금까지 추천시스템 연구에서 사용되는 경우는 거의 없었다. 이에 본 연구는 고객의 검색 행동에 주목하여 온라인 쇼핑몰 고객의 검색 키워드 데이터와 구매 데이터를 고려한 하이브리드 협업 필터링을 제안하였다. 본 연구는 제안된 모델의 적용 가능성을 검증하기 위해 실제 온라인 쇼핑몰 데이터를 사용하여 성능을 검증하였다. 연구 결과, 추천 상품의 개수가 많아질수록 고객의 검색 키워드를 기반으로 구축된 협업필터링의 추천 성능이 향상되는 반면 일반적인 협업필터링의 성능은 추천된 상품의 개수가 많아질수록 점차 감소함을 발견하였다. 따라서 본 연구는 검색 키워드 데이터를 활용한 하이브리드 협업필터링이 고객의 선호도를 반영한 추천할 수 있으며, 구매이력 데이터의 정보부족을 해결할 수 있음을 확인하였다. 이는 기존의 정량 데이터만을 활용한 추천 시스템이 아닌, 비정형 데이터인 텍스트를 사용함으로써 새로운 하이브리드 협업필터링 구축 방법을 제안했다는 점에서 의의가 있다.
대용량 문서에서 포함된 정보를 추출하는 작업은 정보검색분야 뿐만 아니라 질의응답과 요약분야에서 매우 유용하다. 정보 추출 분야 중 관계추출 기술이 중요하게 인식되고 있으나, 기계학습모델을 기반으로 개발하기 위한 학습집합과 개발된 기술을 평가하기 위한 평가집합의 부재로 연구에 난항을 겪고 있다. 본 논문은 한국과학기술정보연구원(KISTI)이 보유하고 있는 해외학술지 데이터를 기반으로 과학기술용어에 대한 관계추출 기술 시스템을 개발하고 평가하기 위한 테스트 컬렉션(KREC2008) 구축을 위한 구축방법 및 절차를 기술한다. 해외 학술지 데이터의 초록을 대상으로 기술용어를 추출하였고, 기술용어의 쌍의 관계에 해당되는 단어를 Wordnet에 매핑하여 동사의 개념을 일반화하는 여러 개의 개념화된 후보군을 추출하였다. 평가기준 및 절차 교육이 이루어진 평가자가 개념화된 후보군에서 적합하다고 판단되는 "개념"을 "관계"로 지정하였다. Wordnet을 이용하여 "관계"에 대한 후보군을 생성하였기때문에, 일관성 있는 관계설정의 품질의 향상시켰고 비전문가도 쉽게 테스트컬렉션을 구축할 수 있는 방법을 제공하였다. 현재 KREC2008은 정보추출 연구자 및 개발자에게 공개되어 있으며, 과학기술분야 관계추출 시스템의 개발 및 신뢰도 평가를 목적으로 하는 학술대회의 연구결과 발표 및 제품 비교 등에 활용될 예정이다.
최근 각 언론, 기업계, 정부 유관기관 및 학계 등 많은 분야에서 4차 산업에 대한 관심이 폭발적으로 증가하였다. 특히 우리가 피부로 느낄 수 있는 분야인 인공지능이 인간능력을 이미 크게 앞서고 있다는 것을 깨닫고 나서 많은 사람들은 4차산업혁명이 실제로 우리 코 앞에 와있다는 것을 실감할 수 있었다. 이렇게 대부분 사람들의 생각보다 빠르게 다가온 4차산업을 어떻게 효율적으로 대응해야 할까? 특히 최근의 인공지능, 빅데이터, 무인자동차 및 유전자가위 등에 대한 상반된 견해들을 비교분석하는 방식으로 연구를 진행해 본다. 이러한 분석과 연구를 통하여 교육적, 정치적, 사회적, 윤리적 그리고 과학적 영향들을 파악해 본 결과, 현재까지 뚜렷하게 정립되어 있는 개념이나 체계, 시스템이 존재하지 않는다는 것을 이해할 수 있었고 오히려 4차산업혁명의 개념, 체계를 앞서서 정의하고 정립하는 국가나 기업, 개인들이 산업의 주도권을 확보할 수 있다는 것을 알게 되었다. 그러나 한국사회와 대학은 오히려 현재 2차산업혁명의 체계와 문화에서 머물러있는 듯한 모습을 보이고 있는데, 이러한 현실인식 위에서 새로운 산업혁명의 트렌드를 맞추어 따라갈 수 있는 방안들을 찾아 보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.