• Title/Summary/Keyword: Machine tool vibration

Search Result 373, Processing Time 0.018 seconds

Pressure Ripple Reduction in Hydrostatic Transmissions by Using a Hydraulic Filter (맥동흡수용 유압필터에 의한 유압전동장치의 압력맥동 감쇠)

  • 김도태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • This paper deals with pressure ripple attenuation far separated-type Hydrostatic Transmission (HST) consisting ova variable axial piston pump connected in an open loop to a fried displacement axial piston motor. Pressure ripples in HST is major source of vibration which can lead to fatigue failure of components and cause noise. In order to reduce the pressure ripple, an annular tube tripe hydraulic filter is proposed to attenuate pressure ripples with the high frequencies components to achieve better noise reduction in HST. The basic principle of a hydraulic filter is allied to propagation of pressure wave, reflection, absorption in cross section of discontinuity and resonance in the hydraulic pipeline. It is experimentally shown that the hydraulic filter attenuates about 30∼40dB of pressure ripple with high frequencies. These results will assist in modeling and design of noise reduction in hydraulic control systems, and provide a means of designing a quieter HST.

A Study on Shaft Alignment of the Rotating Machinery by using Strain Gages (스트레인게이지를 이용한 회전체의 축정렬 연구)

  • 나상수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.63-68
    • /
    • 1999
  • Because misaligned shafts have caused noise, vibration, bearing failures, and stress concentration of coupling part, which decrease the efficiency and life of a shaft system, the proper alignment of shaft system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition, a telemetry system is this study is used to find the condition of the least bending moment, which is known by analyzing the structure and stress induced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as dynamic state with 100~700 rpm.

  • PDF

Vibration Characteristics of Tires for Light Truck (경상용차용 타이어의 진동특성)

  • 김용우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.102-108
    • /
    • 2000
  • Due to the rapid increase of long-distance transportation, particular attentions have been paid to truck tires, especially to their dynamic characteristics. In this research, experimental modal analysis on two kinds of light-truck tires, i.e., radial tire and bias tire, are performed by using GRFP(global rational fraction polynomial) method to investigate differences of the dynamic behavior of the two tires. The test results have shown that the modal frequencies of bias tire are much higher than their corresponding values of radial tire with a similar mode shape, which is in accordance with the fact that the radial rigidity of bias tire is higher than that of radial tire. And most of the modal decay rates of bias tire are larger than those of radial tire within the scope of this experiment. In the frequency domain range of test, the bias tire has extra modes, which do not occur in the radial tire. This difference is based on the fact that the circumferential rigidity of the bias tire is quite low whereas that of radial tire is so high that the frequencies of the corresponding modes are out of the frequency range of test.

  • PDF

Effect of Orifices in Cushion Sleeve on Cushion Characteristic of Pneumatic Cylinder (쿠션슬리브의 오리피스가 공압실린더의 쿠션특성에 미치는 영향)

  • 박재범;염만오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-80
    • /
    • 2004
  • Cushion sleeves are used in pneumatic cylinders to avoid impact force arising at the end stroke part between moving piston and cylinder cover. In this study low kinds of cushion sleeves are designed, manufactured and attached to the pneumatic cylinder to be experimented. The effects of cushion sleeves on cushion characteristics are investigated. e results are as follows; the pressure variation of cushion room with orifices are inspected to be smaller than that of cushion room without orifices. So sleeves with orifices are expected as protecting from impact and vibration of pneumatic cylinder. The object of this study is to provide data on the charactristics of pneumatic cushion sleeve in case of being used in industry.

A Study on Design Parameters Affecting the Stiffness of Center Pillar-Roof Rail Joint (센터필러 -루프레일 결합부의 강성에 영향을 미치는 인자 연구)

  • 이상범;임홍재;이종선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.94-99
    • /
    • 2004
  • The global stiffnesses and vibration characteristics of vehicle structures are mainly influenced by local stiffnesses of the joint structures consisted of complicated thin-walled panels. In this paper, the parametric study for the stiffnesses of the center pillar-roof rail joint of vehicle structure is performed through the linear static analysis. The analysis result shows that the reinforcement panel much affects the joint stiffness of out-plane direction (i.e., z-direction). And also, the flange radius and width of the joint structure much affect the Joint stiffness of out-plane direction. The study shows that vehicle joint stiffnesses can be effectively determined in designing vehicle structure through the parametric study.

Robust Control of Disturbed Magnetic Bearing Rotor Systems (외란을 받는 자기베어링 주축계의 강건제어)

  • 강호식;송오섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.40-46
    • /
    • 2004
  • Magnetic bearing has been adopted to support a rotor by electromagnetic force without mechanical contact and lubrication process. The recent growth of magnetic bearing applications in many industrial fields requires more accurate design of bearing-rotor system. Due to external forces and uncertainties of magnetic bearing system the actual performance and stability my be worse than it is designed. This paper describes the governing equations of rotor magnetic bearing systems and/or the designing of robust controller via standard $H_{\infty}$ control problem. The system stability and response characteristics are studied by simulations and verified with experimental results.

A Study on Estimating Characteristics of ABS Using High Frequency PWM Control (고주파수 PWM 제어를 이용한 ABS의 특성 평가에 관한 연구)

  • Kim, Byeong-Woo;Lee, Yong-Joo;Park, Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.69-74
    • /
    • 2004
  • In general the surge pressure generated in hydraulic systems causes noise, vibration and odd effect to the system. To reduce the surge pressure, high frequency PWM control of 20KHz was attempted. To estimate the braking noise caused by surge, a vehicle equipped with on-board ABS hydraulic modulator has been experimented with respect to the various breaking condition. Thorough this experiments, it was found that breaking noise has been reduced using high frequency PWM control method compare with low frequency method. To evaluate high frequency control m practice, including verification of general functionality, EMI tests was experimented. Its was found that it is necessary to have the solution to electromagnetic interference(EMI) generated by switching elements.

The Verification on Effect of Sound Absorption Tunnel for Elevated Railway (고가철교 방음터널 효과검증)

  • Kim, Hyung-Doo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.122-127
    • /
    • 2008
  • The source of wayside noise for the train are the aerodynamic noise, wheel/rail noise, and power unit noise. The major source of railway noise is the wheel/rail noise caused by the interaction between the wheels and rails. The Structure borne noise is mainly a low frequency problem. The train noise and vibration nearby the elevated railway make one specific issue. The microphone array method is used to search sound radiation characteristics of elevated structure to predict the noise propagation from an elevated railway. In this paper, the train noise and structure borne noise by train are measured. From the results, we investigated the effect on the sound absorption tunnel for elevated railway.

Feed rate optimizaton of a PMLSM driven feed drive system for minimum vibrations (리니어모터 이송시스템의 진동저감을 위한 이송속도 최적화)

  • Choi Young-Hyu;Choi Eung-Young;Kim Gyu-Tak
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.97-102
    • /
    • 2005
  • This paper presents feed rate optimizaton of a PMLSM driven feed-slide for mininum vibrations by smoothing velocity curve with finite jerk. First of all, the PMLSM was designed and made to reduce detent force. Next, a PMLSM driven feed-slide system was mathematically modeled as a 4-degree-of-freedom lumped parameter model. The key idea of our vibration minimization method is to find out the most appropriate smooth velocity curve with finite jerk. The validity of our proposed method has been verified by comparing computer simulation results of the feed-slide model with experimental ones.

  • PDF

A Design of Pan-tilt Leaf Spring Structure for Artificial Eyeball (인공안구를 위한 팬틸트 구동용 판스프링 설계)

  • Kim Jung-Han;Kim Young-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.22-31
    • /
    • 2005
  • The purpose of this study is to design a flexural structure that has a function of pan and tilt for an artificial eyeball. The artificial eyeball system has a function of image stabilization, which compensate panning and tilting vibration of the body on which the artificial eyeball is attached. The target closed loop control bandwidth is 50Hz, so the mechanical resonance frequency is required to be more than the control bandwidth, which is a tough design problem because of a big mass of camera and actuator. In this study, the design process including the selection of the principal parameters by numerical analysis with ANSYS will be described, as well as the design results and frequency response.