• Title/Summary/Keyword: Machine speed

검색결과 2,764건 처리시간 0.033초

나사 접근 구멍 각도가 조절 가능한 새로운 경사형 지대주의 파절강도 및 나사 풀림력 연구 (Evaluation of Fracture Strength and Screw Loosening of a New Angled Abutment with Angulated Screw Channel)

  • 최재원
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.623-628
    • /
    • 2023
  • The purpose of this study was to evaluate the fracture strength and removal torque value (RTV) of a conventional angled abutment and a newly developed angled abutment (Beauty up abutment) with an angulated screw access hole. Each abutment was divided into a control group and an experimental group (n = 20, respectively). To measure the fracture strength, the abutment was connected to the internal hex implant with 30 Ncm torque, and a load was applied at 30 degree angle with cross-head speed of 1 mm/min using a universal testing machine according to the ISO 14801:2016 standard. To measure RTV, each abutment was fastened to the implant with 30 Ncm torque. Retightening was performed after 10 minutes, and initial RTV was measured with a digital torque gauge. After retightening, a load of 250 N was applied to the abutment at a 30 degree angle using a chewing simulator. After a total of 100,000 repeated loads, RTV was measured. Statistical analysis was performed using Wilcoxon signed rank test and Mann-Whitney U test (α = .05). The fracture strength of the experimental group was statistically significantly lower than that of the control group (P = .009). There was no significant difference between initial RTV and post-loading RTV between the experimental group and the control group (P = .753, P = .527, respectively), and cyclic loading did not significantly affect RTV in both groups (P = .078).

Prediction of spatio-temporal AQI data

  • KyeongEun Kim;MiRu Ma;KyeongWon Lee
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.119-133
    • /
    • 2023
  • With the rapid growth of the economy and fossil fuel consumption, the concentration of air pollutants has increased significantly and the air pollution problem is no longer limited to small areas. We conduct statistical analysis with the actual data related to air quality that covers the entire of South Korea using R and Python. Some factors such as SO2, CO, O3, NO2, PM10, precipitation, wind speed, wind direction, vapor pressure, local pressure, sea level pressure, temperature, humidity, and others are used as covariates. The main goal of this paper is to predict air quality index (AQI) spatio-temporal data. The observations of spatio-temporal big datasets like AQI data are correlated both spatially and temporally, and computation of the prediction or forecasting with dependence structure is often infeasible. As such, the likelihood function based on the spatio-temporal model may be complicated and some special modelings are useful for statistically reliable predictions. In this paper, we propose several methods for this big spatio-temporal AQI data. First, random effects with spatio-temporal basis functions model, a classical statistical analysis, is proposed. Next, neural networks model, a deep learning method based on artificial neural networks, is applied. Finally, random forest model, a machine learning method that is closer to computational science, will be introduced. Then we compare the forecasting performance of each other in terms of predictive diagnostics. As a result of the analysis, all three methods predicted the normal level of PM2.5 well, but the performance seems to be poor at the extreme value.

분할 가중치 테이블 역전파 신경망을 이용한 구구단 학습 기능성 게임 제작에 관한 연구 (A Study on the Implementation of Serious Game Learning Multiplication Table using Back Propagation Neural Network on Divided Interconnection Weights Table)

  • 이경호
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.233-240
    • /
    • 2009
  • 본 논문에서는 학습자의 흥미를 유도하기 위해 인간의 학습 과정과 유사하게 학습 진화되는 구구단 학습 기능성 게임을 제작하였다. 이 기능성 게임은 사용자인 구구단을 배우는 학습자가 교사적 위치에서 아바타를 학습시키는 은유를 이용하여 사용자가 학습되도록 구성하였다. 학습 진화 기술은 역전파 인공신경망을 이용하여 구성하였으나, 인공신경망의 학습 속도 문제를 분할 가중치 테이블 구조를 개발하여 개선하였다. 이렇게 구성된 엔진으로 학습 횟수 60~80번 정도에서 100% 학습률을 얻을 수 있었고, 또한 학습의 횟수에 따른 학습률이 기계적 상승을 하지 않고 학습시마다 다양한 비단조 형태로 증가하여 다양한 인간의 학습률과 유사하게 작동할 수 있었다.

Multi-classification Sensitive Image Detection Method Based on Lightweight Convolutional Neural Network

  • Yueheng Mao;Bin Song;Zhiyong Zhang;Wenhou Yang;Yu Lan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1433-1449
    • /
    • 2023
  • In recent years, the rapid development of social networks has led to a rapid increase in the amount of information available on the Internet, which contains a large amount of sensitive information related to pornography, politics, and terrorism. In the aspect of sensitive image detection, the existing machine learning algorithms are confronted with problems such as large model size, long training time, and slow detection speed when auditing and supervising. In order to detect sensitive images more accurately and quickly, this paper proposes a multiclassification sensitive image detection method based on lightweight Convolutional Neural Network. On the basis of the EfficientNet model, this method combines the Ghost Module idea of the GhostNet model and adds the SE channel attention mechanism in the Ghost Module for feature extraction training. The experimental results on the sensitive image data set constructed in this paper show that the accuracy of the proposed method in sensitive information detection is 94.46% higher than that of the similar methods. Then, the model is pruned through an ablation experiment, and the activation function is replaced by Hard-Swish, which reduces the parameters of the original model by 54.67%. Under the condition of ensuring accuracy, the detection time of a single image is reduced from 8.88ms to 6.37ms. The results of the experiment demonstrate that the method put forward has successfully enhanced the precision of identifying multi-class sensitive images, significantly decreased the number of parameters in the model, and achieved higher accuracy than comparable algorithms while using a more lightweight model design.

Electromagnetic Field and the Poetry of Ezra Pound

  • Ryoo, Gi Taek
    • 영어영문학
    • /
    • 제57권6호
    • /
    • pp.939-958
    • /
    • 2011
  • Ezra Pound has an idea of poetry as a field of energy in which words interact with each other with kinetic energy. The energy field which Pound creates in his poem is analogous to the theory of electromagnetism developed by Michael Faraday and James Maxwell, who look upon the space around magnets, electric charges and currents not as empty but as filled with energy and activity. Pound argues that "words are charged with force like electricity," demonstrating that words charged with their own images or energies of positive or negative valence interact one another. This idea is similar to Faraday's concept of "line of force" which he used to represent the disposition of electric and magnetic forces in space. Pound's concept of "image" as an "intellectual and emotional complex in an instant" is remarkably consonant with the confluence of electric and magnetic fields that are coupled to each other as they travel through space in the form of electromagnetic waves. The instant profusion of conception and perception, much like that of electric and magnetic fields, enables Pound to move beyond the sequential and linear hierarchy in time and space. Particularly, Maxwell's stunning discovery that the electromagnetic waves propagate in space at 'the speed of light' has allowed Pound a relativistic sense of escape from the limitations of Newtonian absolute time and space. Pound's poetry transcends any geographical space and sequential time by rendering and juxtaposing images simultaneously. Pound was fully aware of light and electricity fundamental to what he called his world "the electric world." Pound's experiments in Imagism and Vorticism can be considered an attempt to rediscover a place for poetry in the modern world of science and technology. Almost all the appliances that we think of today as modern were laid down in the closing decades of the 19th century and the first decades of the 20th century, in response to the availability of electromagnetic energy. This paper explores how Pound responded to the age of modern technology and science, examining his conception of "image" through his many analogies and similes drawn from electromagnetism. Pound's imagist poetics and poetry come to embody, not only the characteristics of the electric age in the early twentieth century, but the principles of electromagnetism the electric age is based upon.

Real-time prediction on the slurry concentration of cutter suction dredgers using an ensemble learning algorithm

  • Han, Shuai;Li, Mingchao;Li, Heng;Tian, Huijing;Qin, Liang;Li, Jinfeng
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.463-481
    • /
    • 2020
  • Cutter suction dredgers (CSDs) are widely used in various dredging constructions such as channel excavation, wharf construction, and reef construction. During a CSD construction, the main operation is to control the swing speed of cutter to keep the slurry concentration in a proper range. However, the slurry concentration cannot be monitored in real-time, i.e., there is a "time-lag effect" in the log of slurry concentration, making it difficult for operators to make the optimal decision on controlling. Concerning this issue, a solution scheme that using real-time monitored indicators to predict current slurry concentration is proposed in this research. The characteristics of the CSD monitoring data are first studied, and a set of preprocessing methods are presented. Then we put forward the concept of "index class" to select the important indices. Finally, an ensemble learning algorithm is set up to fit the relationship between the slurry concentration and the indices of the index classes. In the experiment, log data over seven days of a practical dredging construction is collected. For comparison, the Deep Neural Network (DNN), Long Short Time Memory (LSTM), Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and the Bayesian Ridge algorithm are tried. The results show that our method has the best performance with an R2 of 0.886 and a mean square error (MSE) of 5.538. This research provides an effective way for real-time predicting the slurry concentration of CSDs and can help to improve the stationarity and production efficiency of dredging construction.

  • PDF

A Preliminary Study on Evaluation of TimeDependent Radionuclide Removal Performance Using Artificial Intelligence for Biological Adsorbents

  • Janghee Lee;Seungsoo Jang;Min-Jae Lee;Woo-Sung Cho;Joo Yeon Kim;Sangsoo Han;Sung Gyun Shin;Sun Young Lee;Dae Hyuk Jang;Miyong Yun;Song Hyun Kim
    • Journal of Radiation Protection and Research
    • /
    • 제48권4호
    • /
    • pp.175-183
    • /
    • 2023
  • Background: Recently, biological adsorbents have been developed for removing radionuclides from radioactive liquid waste due to their high selectivity, eco-friendliness, and renewability. However, since they can be damaged by radiation in radioactive waste, a method for estimating the bio-adsorbent performance as a time should consider the radiation damages in terms of their renewability. This paper aims to develop a simulation method that applies a deep learning technique to rapidly and accurately estimate the adsorption performance of bio-adsorbents when inserted into liquid radioactive waste. Materials and Methods: A model that describes various interactions between a bio-adsorbent and liquid has been constructed using numerical methods to estimate the adsorption capacity of the bio-adsorbent. To generate datasets for machine learning, Monte Carlo N-Particle (MCNP) simulations were conducted while considering radioactive concentrations in the adsorbent column. Results and Discussion: Compared with the result of the conventional method, the proposed method indicates that the accuracy is in good agreement, within 0.99% and 0.06% for the R2 score and mean absolute percentage error, respectively. Furthermore, the estimation speed is improved by over 30 times. Conclusion: Note that an artificial neural network can rapidly and accurately estimate the survival rate of a bio-adsorbent from radiation ionization compared with the MCNP simulation and can determine if the bio-adsorbents are reusable.

단백질 기능 예측 모델의 주요 딥러닝 모델 비교 실험 (Comparison of Deep Learning Models Using Protein Sequence Data)

  • 이정민;이현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권6호
    • /
    • pp.245-254
    • /
    • 2022
  • 단백질은 모든 생명 활동의 기본 단위이며, 이를 이해하는 것은 생명 현상을 연구하는 데 필수적이다. 인공신경망을 이용한 기계학습 방법론이 대두된 이후로 많은 연구자들이 단백질 서열만을 사용하여 단백질의 기능을 예측하고자 하였다. 많은 조합의 딥러닝 모델이 학계에 보고되었으나 그 방법은 제각각이며 정형화된 방법론이 없고, 각기 다른 데이터에 맞춰져있어 어떤 알고리즘이 더 단백질 데이터를 다루는 데 적합한지 직접 비교분석 된 적이 없다. 본 논문에서는 단백질의 기능을 예측하는 융합 분야에서 가장 많이 사용되는 대표 알고리즘인 CNN, LSTM, GRU 모델과 이를 이용한 두가지 결합 모델에 동일 데이터를 적용하여 각 알고리즘의 단일 모델 성능과 결합 모델의 성능을 정확도와 속도를 기준으로 비교 평가하였으며 최종 평가 척도를 마이크로 정밀도, 재현율, F1 점수로 나타내었다. 본 연구를 통해 단순 분류 문제에서 단일 모델로 LSTM의 성능이 준수하고, 복잡한 분류 문제에서는 단일 모델로 중첩 CNN이 더 적합하며, 결합 모델로 CNN-LSTM의 연계 모델이 상대적으로 더 우수함을 확인하였다.

전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여 (Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data)

  • 심채연;백경민;박현수;박종연
    • 대기
    • /
    • 제34권2호
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

Numerical, Machine Learning and Deep-Learning based Framework for Weather Prediction

  • Bhagwati Sharan;Mohammad Husain;Mohammad Nadeem Ahmed;Anil Kumar Sagar;Arshad Ali;Ahmad Talha Siddiqui;Mohammad Rashid Hussain
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.63-76
    • /
    • 2024
  • Weather forecasting has become a very popular topic nowadays among researchers because of its various effects on global lives. It is a technique to predict the future, what is going to happen in the atmosphere by analyzing various available datasets such as rain, snow, cloud cover, temperature, moisture in the air, and wind speed with the help of our gained scientific knowledge i.e., several approaches and set of rules or we can say them as algorithms that are being used to analyze and predict the weather. Weather analysis and prediction are required to prevent nature from natural losses before it happens by using a Deep Learning Approach. This analysis and prediction are the most challenging task because of having multidimensional and nonlinear data. Several Deep Learning Approaches are available: Numerical Weather Prediction (NWP), needs a highly calculative mathematical equation to gain the present condition of the weather. Quantitative precipitation nowcasting (QPN), is also used for weather prediction. In this article, we have implemented and analyzed the various distinct techniques that are being used in data mining for weather prediction.