• Title/Summary/Keyword: Machine simulation

Search Result 1,919, Processing Time 0.023 seconds

A Study on the Design of Three-Dimensional Bending Machine (3차원 Bending Machine 설계에 관한 연구)

  • Lee, Choon-Man;Lim, Sang-Heon;Park, Dong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1852-1857
    • /
    • 2003
  • This study is concerned about the development of three-dimensional bending machine for heat exchanger. Recently, three-dimensional bending is required for various heat exchanger. The purpose of this study is design of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. The copper-tube is modeled by shell elements and the machine is modeled by placing proper shell and solid finite elements and fictitious mass properties to represent the real one. The final results of analysis are applied to the design of three-dimensional bending machine and the machine is successfully developed.

  • PDF

Developement of Simulation Model for Analysis of Hydraulic Systems in Injection Molding Machine (1) (사출성형기 유압시스템 분석용 시뮬레이션 모델 개발 (1))

  • 신성철;박영진;김진영;이강걸
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.25-32
    • /
    • 2002
  • Hydraulic systems of injection molding machine are modelled and simulated with AMESim which is a commercial program. Detail models of hydraulic components are simulated and simulation results are evaluated with maker's test results in catalog. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like cylinder speed, cylinder displacement, pressure, flow rates at each node and so on. Total circuit model is also made and analyzed. The prediction made by simulation will be used design of hydraulic systems of injection molding machine.

  • PDF

Prediction of Multi-Physical Analysis Using Machine Learning (기계학습을 이용한 다중물리해석 결과 예측)

  • Lee, Keun-Myoung;Kim, Kee-Young;Oh, Ung;Yoo, Sung-kyu;Song, Byeong-Suk
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.94-102
    • /
    • 2016
  • This paper proposes a new prediction method to reduce times and labor of repetitive multi-physics simulation. To achieve exact results from the whole simulation processes, complex modeling and huge amounts of time are required. Current multi-physics analysis focuses on the simulation method itself and the simulation environment to reduce times and labor. However this paper proposes an alternative way to reduce simulation times and labor by exploiting machine learning algorithm trained with data set from simulation results. Through comparing each machine learning algorithm, Gaussian Process Regression showed the best performance with under 100 training data and how similar results can be achieved through machine-learning without a complex simulation process. Given trained machine learning algorithm, it's possible to predict the result after changing some features of the simulation model just in a few second. This new method will be helpful to effectively reduce simulation times and labor because it can predict the results before more simulation.

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Virtual Machine Tool

  • Jang, Dong-Young
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.204-208
    • /
    • 1998
  • The fundamental issues to evaluate machine tool's performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. The designed virtual machining system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Machining Simulation System (통합절삭 시뮬레이션 시스템용 선삭표면조도 시뮬레이션 알고리즘의 설계)

  • 장동영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.19-33
    • /
    • 1999
  • The fundamental issues to evaluate machine tools performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. This proposed algorithm could be used in the designed virtual machining system. The system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

A Study on Virtual Machine Design Simulator (가상 기구설계 시뮬레이터에 관한 연구)

  • Yim, Hong-Jae;Ju, Jae-Hwan;Sung, Sang-Jun;Jang, Si-Youl;Lee, Kee-Sung;Shin, Dong-Hoon;Jeong, Jae-Il;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1559-1563
    • /
    • 2007
  • This paper presents a virtual machine design simulation program. Kinematics of various mechanisms can be modeled with 3 dimensional geometry and actuators. CAD data for any machine component can be easily imported in STL format. Machine components are assembled with kinematic joints simply by drag and drop function in virtual graphic simulator. Interference and collision of any component with other components can be identified during the motion simulation. Graphic user interface program is developed using Microsoft Direct X code. A precision micro stage system is demonstrated with the proposed virtual machine design simulator.

  • PDF

Simulation of Synchronous Machines Using Object-Oriented Digital Computer Simulator (객체지향기법을 적용한 디지탈 컴퓨터 시뮬레이터를 이용한 동기 발전기 시뮬레이션)

  • Park, Ji-Ho;Baek, Young-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.102-105
    • /
    • 1995
  • In power system stability analysis, modelling of the synchronous machine is necessary and vary important. In this paper, a synchronous machine is modeled and simulated by using Object-Oriented method. The mathematical equations describing the dynamic behavior of the synchronous machine is represented by block diagram and Objected-Oriented Digital Computer Simulater(ODCS). The developed method is tested for a one-machine-to-infinite-bus system, which is accurate and very useful for a multi-machine system simulation.

  • PDF

Extending the DEVS formalism toward Geometrical Kinematic Modeling and Simulation for Virtual Manufacturing Environment (가상제조환경을 위한 형상기구학 모델링 및 시뮬레이션으로의 DEVS 확장)

  • 황문호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.24-29
    • /
    • 1999
  • Proposed in this paper is a modeling and simulation methodology for a virtual manufacturing environment. Based on DEVS formalism[Zeigler 76], the proposed model, so called GKDEVS, is designed to descript the geometrical knematic structure as well as event-driven and continuous state dynamics. In terms of abstract simulation algorithm[Zeigler 84], the simulation method of GKDEVS is proposed for combined discrete-continuous simulation. Using the GKDEVS, and FMS model consisting of a turing machine, a 3-axis machine and a RGV-mounted robot is constructed and simulated.

  • PDF

Utilization of Simulation and Machine Learning to Analyze and Predict Win Rates of the Characters Battle

  • Kang, Hyun-Syug
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.39-46
    • /
    • 2020
  • Recently, for designing virtual characters in the battle game field effectively, some methods are very needed to predicate the win rates of the battle of them efficiently. In this paper, we propose a method to solve this problem by combining simulation and machine learning. Firstly, a simulation is used to analyze the win rates of the battle of virtual characters in the battle game. In addition, we apply a regression model based machine learning scheme to predict win rates of the battle of virtual characters according to their abilities. Our experimental results using suggested method show that it is almost no difference between the win rates of the simulation and the prediction results using the machine learning scheme. And also, we can obtain good performance in the experiment using only simple regression based machine learning model.

Hardware-in-the-loop Simulation of CNC-controlled Feed Drives (CNC 제어 이송계의 Hardware-in-the-loop 시뮬레이션)

  • Lee, Wonkyun;Lee, Chan-Young;Kim, Joo-Yeong;Song, Chang Kyu;Min, Byung-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.447-454
    • /
    • 2015
  • Design and application of hardware-in-the-loop simulation (HILS) for design of CNC-controlled machine tool feed drives is discussed. The CNC machine tool is a complex mechatronics system where the complexity results from the software-based controller composed of a variety of functionalities and advanced control algorithms. Therefore, using a real CNC controller in the control simulation has merits considering the efforts and accuracy of the simulation modeling. In this paper challenges in HILS for a CNC controlled feed drive, such as minimization of time delay and transmission error that are caused by discretization of the feed drive model, is elaborated. Using an experimental HILS setup of a machine tool feed drive applications in controller gain selection and CNC diagnostics are presented.